Mean shift registration algorithm for dissimilar sensors

The mean shift registration (MSR) algorithm is proposed to accurately estimate the biases for multiple dissimilar sensors. The new algorithm is a batch optimization procedure. The maximum likelihood estimator is used to estimate the target states, and then the mean shift algorithm is implemented to estimate the sensor biases. Monte Carlo simulations show that the MSR algorithm has significant improvement in performance with reducing the standard deviation and mean of sensor biased estimation error compared with the maximum likelihood registration algorithm. The quantitative analysis and the qualitative analysis show that the MSR algorithm has less computation than the maximum likelihood registration method.

[1]  Henry Leung,et al.  An exact maximum likelihood registration algorithm for data fusion , 1997, IEEE Trans. Signal Process..

[2]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[3]  Haifeng Chen,et al.  Robust Fusion of Uncertain Information , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[4]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Larry S. Davis,et al.  Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Color Modeling and Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[8]  S. Challa,et al.  Joint sensor registration and track-to-track fusion for distributed trackers , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[9]  B. Ristic,et al.  Maximum likelihood registration for multiple dissimilar sensors , 2003 .

[10]  Mustafa Ozden,et al.  A Nonparametric Adaptive Tracking Algorithm Based on Multiple Feature Distributions , 2006, IEEE Transactions on Multimedia.

[11]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Demetrios G. Lainiotis,et al.  Adaptive deconvolution of seismic signals-performance, computational analysis, parallelism , 1988, IEEE Trans. Acoust. Speech Signal Process..

[13]  Branko Ristic,et al.  Sensor registration in ECEF coordinates using the MLR algorithm , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[14]  Zi-Wei Zheng,et al.  New least squares registration algorithm for data fusion , 2004 .

[15]  A. P. Sage,et al.  IEEE Transactions on Systems, Man & Cybernetics , 2004 .

[16]  Peter Meer,et al.  Nonlinear Mean Shift for Clustering over Analytic Manifolds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).