Water-collecting capability of radial-wettability gradient surfaces generated by controlled surface reactions.

In this work, we developed a controlled oxidation reaction of vinyl-terminated self-assembled monolayers (SAMs) to carboxylic acid-terminated ones to generate radially inward wettability gradient surfaces. The hydrophobicity was introduced on a silicon wafer by SAMs of 10-undecenyltrichlorosilane, and after the initial drop in oxidation, followed by the dilution-by-dropping method, radial-wettability gradient surfaces having hydrophilic centers and hydrophobic exteriors were generated. This direct drop reaction on the SAMs did not require an elastomeric stamp to be fabricated, which allowed for facile tuning of the gradients in terms of sizes and shapes. The fabricated wettability gradient surfaces possessed a water-collecting capability toward the hydrophilic center, which was inactive on previous linear wettability gradient surfaces.