Testing the linearity in partially linear models

A test is proposed to check the linearity of the nonparametric portion in the partially linear regression model with a linear interpolation. The test is given by a p-value which is derived using the fiducial method. This p-value can also be thought as a generalised p-value. Under the null hypothesis, the p-value is uniformly distributed on interval (0, 1). Meanwhile the test is consistent under mild conditions. Finally, a good finite sample performance of the test is investigated by simulations, in which comparisons with other tests are also given.

[1]  B. Laurent,et al.  ADAPTIVE TESTS OF LINEAR HYPOTHESES BY MODEL SELECTION , 2003 .

[2]  Emmanuel Guerre,et al.  Data-Driven Rate-Optimal Specification Testing in Regression Models , 2004 .

[3]  Hua Liang Checking linearity of non-parametric component in partially linear models with an application in systemic inflammatory response syndrome study , 2006, Statistical methods in medical research.

[4]  Xingzhong Xu,et al.  Fiducial inference in the pivotal family of distributions , 2006 .

[5]  R. Blundell,et al.  Semiparametric estimation and consumer demand , 1998 .

[6]  Holger Dette,et al.  A consistent test for the functional form of a regression based on a difference of variance estimators , 1999 .

[7]  D. Cox,et al.  A smoothing spline based test of model adequacy in polynomial regression , 1989 .

[8]  Ana Bianco,et al.  Robust estimators in semiparametric partly linear regression models , 2004 .

[9]  Shu-Hui Lin,et al.  Generalized inferences on the common mean vector of several multivariate normal populations , 2007 .

[10]  Wolfgang Härdle,et al.  Structural Tests in Additive Regression , 2001 .

[11]  Holger Dette,et al.  Validation of linear regression models , 1998 .

[12]  Winfried Stute,et al.  Nonparametric model checks for regression , 1997 .

[13]  G. Claeskens Restricted likelihood ratio lack‐of‐fit tests using mixed spline models , 2004 .

[14]  Y. Baraud Model selection for regression on a fixed design , 2000 .

[15]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[16]  Samaradasa Weerahandi,et al.  Generalized Confidence Intervals , 1993 .

[17]  P. Massart,et al.  Gaussian model selection , 2001 .

[18]  Mary C. Meyer A test for linear versus convex regression function using shape‐restricted regression , 2003 .

[19]  Hung Chen,et al.  Convergence Rates for Parametric Components in a Partly Linear Model , 1988 .

[20]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[21]  A. P. Dawid,et al.  The Functional-Model Basis of Fiducial Inference , 1982 .

[22]  Hu Hui The generalized p-value of the one-way layout analysis of variance model , 2007 .

[23]  E. Mammen Nonparametric Smoothing and Lackof-Fit Tests , 2001 .

[24]  ARROLL,et al.  Estimation in Partially Linear Models With Missing Covariates , 2004 .

[25]  Grace Wahba,et al.  Testing the (Parametric) Null Model Hypothesis in (Semiparametric) Partial and Generalized Spline Models , 1988 .

[26]  Jeffrey D. Hart,et al.  Nonparametric Smoothing and Lack-Of-Fit Tests , 1997 .

[27]  C. Gouriéroux,et al.  Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters , 1982 .

[28]  H. Iyer,et al.  Fiducial Generalized Confidence Intervals , 2006 .

[29]  P. Olver On Multivariate Interpolation , 2006 .

[30]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[31]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[32]  조재현 Goodness of fit tests for parametric regression models , 2004 .

[33]  K. Jetter,et al.  Multivariate Approximation and Interpolation , 1990 .

[34]  Jianqing Fan,et al.  Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .