A multisurface classical trajectory study of the dynamics of the reaction O(1D2)+H2→OH(ν′,J′,T′, Θ′)+H using the diatomics-in-molecules method

[1]  J. K. Badenhoop,et al.  A reduced dimensionality quantum reactive scattering study of the insertion reaction O(1D)+H2→OH+H , 1989 .

[2]  L. B. Harding,et al.  An improved long range potential for O(1D)+H2 , 1988 .

[3]  J. J. Sloan,et al.  A multisurface DIM trajectory study of the reaction: O(1Dg)+H2(X 1Σ+g)→OH(X 2Π)+H(2S) , 1988 .

[4]  I. Paidarová,et al.  Diatomics‐in‐molecules models for H2O and H2O−. II. A self‐consistent description of the 1A′, 1A″, 3A′, and 3A″ states of H2O , 1987 .

[5]  G. Jursich,et al.  Dynamics of the reaction O(1D2)+H2→OH(X 2Π,v‘=2,3)+H: Full characterization of product energetics , 1987 .

[6]  James S. Wright,et al.  The effect of reagent translational energy in the reaction O(1D2) + H2 → OH(2Π) + H , 1986 .

[7]  J. J. Sloan,et al.  The initial product vibrational energy distribution in the reaction between O(1D2) and H2 , 1986 .

[8]  G. Schatz,et al.  A theoretical study of complex formation, isotope effects, and energy partitioning in the atomic oxygen(1D) + molecular hydrogen(D2, HD) reaction , 1986 .

[9]  Yulin Huang,et al.  The nascent product vibrational energy distribution of the reaction O(1D)+H2 by the grating selection chemical laser technique , 1986 .

[10]  J. Butler,et al.  Reaction dynamics of O(1D2)+H2, HD, D2: OH, OD(X 2Πi) product internal energy distributions , 1986 .

[11]  L. Holmlid,et al.  Monte carlo simulation of RRKM unimolecular decomposition in molecular beam experiments. IV. Product OH angular and velocity distributions from O(1D)+H2 , 1985 .

[12]  L. Holmlid,et al.  Monte Carlo simulation of O(1D) + H2 and O(1D) + HCl — rotational excitation of product OH radicals , 1985 .

[13]  R. Polák,et al.  A sensitivity analysis of a diatomics-in-molecules model of the 1A' states of H2O , 1985 .

[14]  R. Bersohn,et al.  Isotopic branching ratio for the reaction A+HD→AD(H)+H(D) , 1985 .

[15]  I. Paidarová,et al.  Diatomics‐in‐molecules models for H2O and H2O−. I. Valence bond diatomic fragment matrices , 1985 .

[16]  Quasi-classical dynamics on the ground state surface of H2O , 1983 .

[17]  J. Butler,et al.  Vibrational excitation of OH(X2Π) produced in the reaction of O(1D) with H2 , 1983 .

[18]  L. Holmlid,et al.  Monte Carlo simulation of RRKM unimolecular decomposition in molecular beam experiments. I. Basic considerations and calculational procedure , 1981 .

[19]  L. Holmlid,et al.  Monte Carlo simulation of RRKM unimolecular decomposition in molecular beam experiments. II. Application to angular distributions and absolute cross sections for the system K+RbCl , 1981 .

[20]  S. Sibener,et al.  REACTIVE SCATTERING OF O(1D) + H2 , 1981 .

[21]  J. Butler,et al.  OH (X 2Πi) product internal energy distribution formed in the reaction of O(1D2) with H2 , 1980 .

[22]  J. Butler,et al.  The OH(X2Π, υ = 0) rotational energy distribution in the reaction of O(1D) + H2 , 1979 .

[23]  W. Lester,et al.  Product state distributions in the reaction O(1D2)+H2→OH+H: Comparison of experiment with theory , 1979 .

[24]  K. Sorbie,et al.  Theoretical study of the O(D) + H2(Sg ) reactive quenching process , 1976 .

[25]  J. Polanyi Concepts in reaction dynamics , 1972 .

[26]  J. Polanyi,et al.  Distribution of Reaction Products. V. Reactions Forming an Ionic Bond, M+XC (3 d) , 1969 .