Fourth-order 2N-storage Runge-Kutta schemes

A family of five-stage fourth-order Runge-Kutta schemes is derived; these schemes required only two storage locations. A particular scheme is identified that has desirable efficiency characteristics for hyperbolic and parabolic initial (boundary) value problems. This scheme is competitive with the classical fourth-order method (high-storage) and is considerably more efficient and accurate than existing third-order low-storage schemes.