Measurement of input functions in rodents: challenges and solutions.

[1]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[2]  E. Hoffman,et al.  Noninvasive determination of local cerebral metabolic rate of glucose in man. , 1980, The American journal of physiology.

[3]  Michael E. Phelps,et al.  Error Sensitivity of Fluorodeoxyglucose Method for Measurement of Cerebral Metabolic Rate of Glucose , 1981 .

[4]  J. P. Bazin,et al.  Handling of Dynamic Sequences in Nuclear Medicine , 1982, IEEE Transactions on Nuclear Science.

[5]  M. Phelps,et al.  Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. , 1989, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  T. Momose,et al.  Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[7]  M E Phelps,et al.  Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  M E Phelps,et al.  Derivation of input function from FDG-PET studies in small hearts. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[9]  M. Yacoub,et al.  Enhanced myocardial 18F-2-fluoro-2-deoxyglucose uptake after orthotopic heart transplantation assessed by positron emission tomography. , 1997, Journal of the American College of Cardiology.

[10]  Diters Rw,et al.  Clinical and clinicopathological assessment of serial phlebotomy in the Sprague Dawley rat. , 1997 .

[11]  R. Leahy,et al.  High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. , 1998, Physics in medicine and biology.

[12]  A. A. Lammertsma,et al.  On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies , 1999, European Journal of Nuclear Medicine.

[13]  Simon R. Cherry,et al.  Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET , 2000, IEEE Transactions on Medical Imaging.

[14]  S. Keiding,et al.  Dynamic 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography of liver tumours without blood sampling , 2000, European Journal of Nuclear Medicine.

[15]  H. Iida,et al.  Development of a phoswich detector for a continuous blood sampling system , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).

[16]  A A Lammertsma,et al.  Image-derived input functions for determination of MRGlu in cardiac (18)F-FDG PET scans. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[17]  Cyril Riddell,et al.  Noninvasive estimation of the aorta input function for measurement of tumor blood flow with [/sup 15/O] water , 2001, IEEE Transactions on Medical Imaging.

[18]  C. Dence,et al.  Comparison of 1-(11)C-glucose and (18)F-FDG for quantifying myocardial glucose use with PET. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  C. Dence,et al.  Quantification of myocardial glucose utilization by pet and 1-carbon-11-glucose , 2002, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[20]  Philippe Hantraye,et al.  Arterial input function measurement without blood sampling using a beta-microprobe in rats. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[21]  C. Dence,et al.  Techniques necessary for multiple tracer quantitative small-animal imaging studies. , 2005, Nuclear medicine and biology.

[22]  S. Huang,et al.  Estimation of myocardial glucose utilisation with PET using the left ventricular time-activity curve as a non-invasive input function , 2006, Medical and Biological Engineering and Computing.