Shadow detection using a physical basis

Shadow detection is an important aspect of foreground/background classification. Many techniques exist, most of them assuming that casting a shadow results only in a change in intensity and no change in color. In this paper we show that in most practical indoor and outdoor situations there will also be a color shift. We propose an algorithm for estimating this color shift from the images, and using it to remove shadow pixels. The proposed algorithm is compared experimentally to an existing algorithm using real image sequences. Results show a significant improvement of performance.

[1]  Mahesan Niranjan,et al.  Realisable Classifiers: Improving Operating Performance on Variable Cost Problems , 1998, BMVC.

[2]  Heinrich Niemann,et al.  The systematic design and analysis cycle of a vision system: a case study in video surveillance , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  Mohan M. Trivedi,et al.  Detecting Moving Shadows : Formulation , Algorithms and Evaluation , 2001 .

[4]  Naoya Ohta,et al.  A statistical approach to background subtraction for surveillance systems , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[5]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[6]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[7]  Mubarak Shah,et al.  A hierarchical approach to robust background subtraction using color and gradient information , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[8]  Mubarak Shah,et al.  Tracking and Object Classification for Automated Surveillance , 2002, ECCV.

[9]  Jun-Wei Hsieh,et al.  Shadow elimination for effective moving object detection by Gaussian shadow modeling , 2003, Image Vis. Comput..

[10]  Mohan M. Trivedi,et al.  Detecting Moving Shadows: Algorithms and Evaluation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Tom Fawcett,et al.  Robust Classification for Imprecise Environments , 2000, Machine Learning.

[12]  Bir Bhanu,et al.  Physical models for moving shadow and object detection in video , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  P.J. Withagen,et al.  CCD characterization for a range of color cameras , 2005, 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings.

[14]  Academisch Proefschrift,et al.  Object detection and segmentation for visual surveillance , 2006 .

[15]  Ben Kröse,et al.  Probabilistic audio visual sensor fusion for speaker detection , 2006 .

[16]  Gregor Pavlin,et al.  Fault localization in bayesian networks , 2006 .

[17]  Klamer Schutte,et al.  CCD Color Camera Characterization for Image Measurements , 2007, IEEE Transactions on Instrumentation and Measurement.

[18]  Klamer Schutte,et al.  Global Intensity Correction in Dynamic Scenes , 2009, International Journal of Computer Vision.