Mimetic finite differences for nonlinear and control problems
暂无分享,去创建一个
Paola F. Antonietti | Marco Verani | L. Beirão da Veiga | Nadia Bigoni | P. Antonietti | M. Verani | Nadia Bigoni | L. Veiga
[1] Michael Hintermüller,et al. AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .
[2] M. Shashkov,et al. A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .
[3] R. S. Falk. Error estimates for the approximation of a class of variational inequalities , 1974 .
[4] Stefan Ulbrich,et al. Adaptive Multilevel Inexact SQP Methods for PDE-Constrained Optimization , 2011, SIAM J. Optim..
[5] D. Lamberton,et al. Variational inequalities and the pricing of American options , 1990 .
[6] S. Chow. Finite element error estimates for non-linear elliptic equations of monotone type , 1989 .
[7] Annalisa Buffa,et al. Innovative mimetic discretizations for electromagnetic problems , 2010, J. Comput. Appl. Math..
[8] F. Boyer,et al. Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .
[9] Ricardo H. Nochetto,et al. Adaptive finite element method for shape optimization , 2012 .
[10] Lourenço Beirão da Veiga,et al. A mimetic discretization of elliptic obstacle problems , 2013, Math. Comput..
[11] Gianmarco Manzini,et al. An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .
[12] Gianmarco Manzini,et al. Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.
[13] Karl Kunisch,et al. Shape Optimization and Fictitious Domain Approach for Solving Free Boundary Problems of Bernoulli Type , 2003, Comput. Optim. Appl..
[14] I. Aranson,et al. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations , 2011, Journal of mathematical biology.
[15] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[16] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[17] Yunqing Huang,et al. Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems , 2010, J. Sci. Comput..
[18] M. Shashkov,et al. CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .
[19] Ricardo H. Nochetto,et al. Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.
[20] Vít Dolejší,et al. An optimal L∞(L2)-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection–diffusion problem , 2007 .
[21] G. Gatica,et al. A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis , 2004 .
[22] Andreas Veeser,et al. Hierarchical error estimates for the energy functional in obstacle problems , 2011, Numerische Mathematik.
[23] Konstantin Lipnikov,et al. A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..
[24] Wenbin Liu,et al. A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..
[25] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[26] Arnd Rösch,et al. Error estimates for linear-quadratic control problems with control constraints , 2006, Optim. Methods Softw..
[27] Gianmarco Manzini,et al. Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..
[28] Kunibert G. Siebert,et al. A Posteriori Error Estimators for Control Constrained Optimal Control Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.
[29] Paola F. Antonietti,et al. Mimetic finite difference approximation of quasilinear elliptic problems , 2015 .
[30] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[31] William W. Hager,et al. Error estimates for the finite element solution of variational inequalities , 1977 .
[32] Lourenço Beirão da Veiga,et al. A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.
[33] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[34] Gianmarco Manzini,et al. Monotonicity Conditions in the Mimetic Finite Difference Method , 2011 .
[35] Gianmarco Manzini,et al. The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..
[36] Lourenço Beirão da Veiga,et al. Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems , 2013, SIAM J. Numer. Anal..
[37] Gianmarco Manzini,et al. Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..
[38] Ralf Kornhuber,et al. A posteriori error estimates for elliptic variational inequalities , 1996 .
[39] Gabriel N. Gatica,et al. A Local Discontinuous Galerkin Method for Nonlinear Diffusion Problems with Mixed Boundary Conditions , 2004, SIAM J. Sci. Comput..
[40] Fredi Tröltzsch,et al. A general theorem on error estimates with application to a quasilinear elliptic optimal control problem , 2012, Comput. Optim. Appl..
[41] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[42] Timo Tiihonen,et al. Shape optimization and trial methods for free boundary problems , 1997 .
[43] Reinhard Scholz,et al. Numerical solution of the obstacle problem by the penalty method , 1984, Computing.
[44] Carsten Carstensen,et al. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.
[45] M. C. Delfour,et al. Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.
[46] Carsten Carstensen,et al. Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.
[47] Fabio Milner,et al. Mixed finite element methods for quasilinear second-order elliptic problems , 1985 .
[48] Gianmarco Manzini,et al. Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .
[49] Miloslav Feistauer,et al. L ∞ (L 2)-error estimates for the DGFEM applied to convection–diffusion problems on nonconforming meshes , 2009, J. Num. Math..
[50] J. David Moulton,et al. A multilevel multiscale mimetic (M3) method for two-phase flows in porous media , 2008, J. Comput. Phys..
[51] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[52] B. Rivière,et al. A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations , 2000 .
[53] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[54] Dietrich Braess,et al. A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.
[55] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[56] Franck Boyer,et al. Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..
[57] Michael Hintermüller,et al. Goal-oriented adaptivity in control constrained optimal control of partial differential equations , 2008, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[58] Gianmarco Manzini,et al. A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .
[59] Richard S. Falk,et al. Approximation of a class of optimal control problems with order of convergence estimates , 1973 .
[60] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[61] Boris Vexler,et al. Adaptive Finite Elements for Elliptic Optimization Problems with Control Constraints , 2008, SIAM J. Control. Optim..
[62] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[63] Paola F. Antonietti,et al. Mimetic Discretizations of Elliptic Control Problems , 2013, J. Sci. Comput..
[64] Mary F. Wheeler,et al. A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[65] L. B. D. Veiga,et al. A Mimetic discretization method for linear elasticity , 2010 .
[66] E. Süli,et al. Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case , 2005 .
[67] Gianmarco Manzini,et al. Convergence of the mimetic finite difference method for eigenvalue problems in mixed form , 2011 .
[68] Stefano Berrone,et al. A new marking strategy for the adaptive finite element approximation of optimal control constrained problems , 2011, Optim. Methods Softw..
[69] V. Dolejší,et al. Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions , 2010 .
[70] Lourenço Beirão da Veiga,et al. A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.
[71] Miloslav Feistauer,et al. Finite element solution of nonlinear elliptic problems , 1987 .
[72] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[73] Haim Brezis,et al. Sur la régularité de la solution d'inéquations elliptiques , 1968 .
[74] Jinchao Xu,et al. A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..
[75] Gianmarco Manzini,et al. Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems , 2011, J. Comput. Phys..
[76] Vít Dolejší,et al. Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems on nonconforming meshes ☆ , 2007 .
[77] R. Scholz,et al. Numerical solution of the obstacle problem by the penalty method , 1986 .
[78] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[79] O. Pironneau. On optimum design in fluid mechanics , 1974 .
[80] T. Geveci,et al. On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .
[81] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[82] E. Süli,et al. A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .
[83] G. Minty. Monotone (nonlinear) operators in Hilbert space , 1962 .
[84] F. Brezzi,et al. A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .
[85] David Mora,et al. Numerical results for mimetic discretization of Reissner–Mindlin plate problems , 2012, 1207.2062.
[86] Franco Brezzi,et al. Virtual Element Methods for plate bending problems , 2013 .
[87] O. Pironneau. On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.
[88] Rolf Rannacher,et al. Adaptive finite element discretization in PDE‐based optimization , 2010 .
[89] Ronald H. W. Hoppe,et al. Adaptive finite element methods for mixed control-state constrained optimal control problems for elliptic boundary value problems , 2010, Comput. Optim. Appl..
[90] Miloslav Feistauer,et al. Finite element approximation of nonlinear elliptic problems with discontinuous coefficients , 1989 .
[91] Ricardo H. Nochetto,et al. Discrete gradient flows for shape optimization and applications , 2007 .
[92] Endre Süli,et al. Discontinuous Galerkin Finite Element Approximation of Nonlinear Second-Order Elliptic and Hyperbolic Systems , 2007, SIAM J. Numer. Anal..
[93] Gianmarco Manzini,et al. Mimetic scalar products of discrete differential forms , 2014, J. Comput. Phys..
[94] F. Milner. A primal hybrid finite element method for quasilinear second order elliptic problems , 1985 .
[95] Kunibert G. Siebert,et al. A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements , 2007, SIAM J. Optim..
[96] R. Hoppe,et al. Adaptive multilevel methods for obstacle problems , 1994 .
[97] Gianmarco Manzini,et al. Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..
[98] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..
[99] Konstantin Lipnikov,et al. M-ADAPTATION METHOD FOR ACOUSTIC WAVE EQUATION ON SQUARE MESHES , 2012 .
[100] Ricardo H. Nochetto,et al. Pointwise a Posteriori Error Analysis for an Adaptive Penalty Finite Element Method for the Obstacle Problem , 2001 .
[101] P. G. Ciarlet,et al. Numerical methods of high-order accuracy for nonlinear boundary value problems , 1969 .
[102] N. Kikuchi. Convergence of a penalty-finite element approximation for an obstacle problem , 1981 .
[103] Rolf Rannacher,et al. Finite element methods for nonlinear elliptic systems of second order , 1980 .
[104] Lie-heng Wang,et al. On the quadratic finite element approximation to the obstacle problem , 2002, Numerische Mathematik.
[105] William W. Hager,et al. Error estimates for the finite element solution of variational inequalities , 1978 .
[106] Andreas Veeser,et al. Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..
[107] J. Tinsley Oden,et al. Local a posteriori error estimators for variational inequalities , 1993 .
[108] Claes Johnson,et al. ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .
[109] Miloslav Feistauer,et al. Analysis of space–time discontinuous Galerkin method for nonlinear convection–diffusion problems , 2011, Numerische Mathematik.
[110] Arnd Rösch,et al. A-posteriori error estimates for optimal control problems with state and control constraints , 2012, Numerische Mathematik.