Enhancement of skyrmion density via interface engineering

Magnetic skyrmions are promising candidates for computing and memory applications. The static and dynamic behaviors of skyrmions are tunable by altering the interfacial magnetic properties. These interfacial magnetic properties are alterable by modifying the interface structure of thin films. However, the relationship between the structural properties of the interface and the skyrmions properties is not straightforward, and a comprehensive insight is required to facilitate better controllability of the skyrmions’ behaviors. Here, we comprehensively understand the relationship between atomic displacements at the interface and skyrmions’ static behavior. In this study, we used ion irradiation to achieve inter-atomic displacements. We observed that the inter-atomic displacements could tailor the physical properties of skyrmions. We noticed a peculiar increase in the magnetization, Dzyaloshinskii–Moriya interaction, and exchange stiffness. The modifications in magnetic properties reduced the domain wall energy, which enhanced the skyrmion density (by six-folds) and reduced the average skyrmion diameter (by 50%). Furthermore, we compared the observed results of ion irradiation with those from the annealing process (a well-studied method for modifying magnetic properties) to better understand the effect of atomic displacements. Our study provides a route to achieve a highly-dense skyrmion state, and it can be explored further to suppress the skyrmion Hall effect for skyrmion-based applications.

[1]  H. Tan,et al.  Unveiling the Emergent Traits of Chiral Spin Textures in Magnetic Multilayers , 2022, Advanced science.

[2]  T. Silva,et al.  Tuning of the Dzyaloshinskii–Moriya interaction by He+ ion irradiation , 2020, Journal of Applied Physics.

[3]  P. Ho,et al.  Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices , 2021, Nature Communications.

[4]  P. Ho,et al.  Intermixing induced anisotropy variations in CoB-based chiral multilayer films , 2021, Journal of Physics D: Applied Physics.

[5]  D. Mailly,et al.  Helium Ions Put Magnetic Skyrmions on the Track. , 2021, Nano letters.

[6]  W. Chao,et al.  Targeted Writing and Deleting of Magnetic Skyrmions in Two-Terminal Nanowire Devices. , 2021, Nano letters.

[7]  P. Ho,et al.  Skyrmion generation from irreversible fission of stripes in chiral multilayer films , 2020, 2101.12696.

[8]  S. Piramanayagam,et al.  Magnetic domain structure and magnetization reversal in (Co/Ni) and (Co/Pd) multilayers , 2020, Journal of Magnetism and Magnetic Materials.

[9]  Vincent Cros,et al.  Controlled Individual Skyrmion Nucleation at Artificial Defects Formed by Ion Irradiation. , 2020, Small.

[10]  T. Kuschel,et al.  Impact of the magnetic proximity effect in Pt on the total magnetic moment of Pt/Co/Ta trilayers studied by x-ray resonant magnetic reflectivity , 2020, AIP Advances.

[11]  V. Garcia,et al.  Inverse transition of labyrinthine domain patterns in ferroelectric thin films , 2020, Nature.

[12]  S. Le,et al.  Ultrathin perpendicular magnetic anisotropy CoFeB free layers for highly efficient, high speed writing in spin-transfer-torque magnetic random access memory , 2019, Scientific Reports.

[13]  G. Paterson,et al.  Strain Anisotropy and Magnetic Domains in Embedded Nanomagnets. , 2019, Small.

[14]  G. Beach,et al.  Measurement of interfacial Dzyaloshinskii-Moriya interaction from static domain imaging , 2019, Physical Review B.

[15]  Weisheng Zhao,et al.  Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy , 2019, Applied Physics Letters.

[16]  M. Balooch,et al.  Key Mechanistic Features of Swelling and Blistering of Helium-Ion-Irradiated Tungsten , 2019, Scripta Materialia.

[17]  W. J. Weber,et al.  Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations , 2019, Current Opinion in Solid State and Materials Science.

[18]  S. Auffret,et al.  Mapping different skyrmion phases in double wedges of Ta/FeCoB/TaOx trilayers , 2019, Physical Review B.

[19]  S. Piramanayagam,et al.  Effect of Dzyaloshinskii–Moriya Interaction Energy Confinement on Current‐Driven Dynamics of Skyrmions , 2019, physica status solidi (RRL) – Rapid Research Letters.

[20]  G. Durin,et al.  Enhancement of the Dzyaloshinskii-Moriya interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO , 2019, Physical Review B.

[21]  Abhijit Ghosh,et al.  Thickness-Dependent Perpendicular Magnetic Anisotropy and Gilbert Damping in Hf/Co20Fe60B20/MgO Heterostructures , 2018, Physical Review Applied.

[22]  C. Marrows,et al.  Magnetic properties and field-driven dynamics of chiral domain walls in epitaxial Pt/Co/AuxPt1−x trilayers , 2018, Physical Review B.

[23]  A. Fert,et al.  Dzyaloshinskii-Moriya interaction at disordered interfaces from ab initio theory: Robustness against intermixing and tunability through dusting , 2018, Applied Physics Letters.

[24]  S. Mangin,et al.  Suppression of all-optical switching in He+ -irradiated Co/Pt multilayers: influence of the domain-wall energy , 2018 .

[25]  G. Beach,et al.  Accurate model of the stripe domain phase of perpendicularly magnetized multilayers , 2017 .

[26]  J. Xia,et al.  An Improved Racetrack Structure for Transporting a Skyrmion , 2017, Scientific Reports.

[27]  C. Marrows,et al.  Effect of interfacial intermixing on the Dzyaloshinskii-Moriya interaction in Pt/Co/Pt , 2016, 1608.03826.

[28]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[29]  J. Åkerman,et al.  Interfacial Dzyaloshinskii-Moriya Interaction in Pt/CoFeB Films: Effect of the Heavy-Metal Thickness. , 2016, Physical review letters.

[30]  G. Finocchio,et al.  Magnetic skyrmions: from fundamental to applications , 2016 .

[31]  A. Stashkevich,et al.  Brillouin light scattering investigation of the thickness dependence of Dzyaloshinskii-Moriya interaction in C o 0.5 F e 0.5 ultrathin films , 2016 .

[32]  T. Devolder,et al.  Probing the Dzyaloshinskii-Moriya interaction in CoFeB ultrathin films using domain wall creep and Brillouin light spectroscopy , 2016, 1604.05475.

[33]  G. Reiss,et al.  Static magnetic proximity effect in Pt / Ni 1 − x Fe x bilayers investigated by x-ray resonant magnetic reflectivity , 2015, 1508.00379.

[34]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[35]  W. E. Bailey,et al.  Effect of direct exchange on spin current scattering in Pd and Pt , 2013, 1308.0450.

[36]  R. Ji,et al.  Investigating the complex mechanism of B migration in a magnetic-tunnel-junction trilayer structure—a combined study using XPS and TOF-SIMS , 2016 .

[37]  Y. Tseng,et al.  Competing Anisotropy-Tunneling Correlation of the CoFeB/MgO Perpendicular Magnetic Tunnel Junction: An Electronic Approach , 2015, Scientific Reports.

[38]  R. Wiesendanger,et al.  Stability of single skyrmionic bits , 2015, Nature Communications.

[39]  R. Wiesendanger,et al.  The properties of isolated chiral skyrmions in thin magnetic films , 2015, 1508.02155.

[40]  Y. Nakatani,et al.  Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction , 2015, Nature Physics.

[41]  T. Devolder,et al.  Controlling magnetic domain wall motion in the creep regime in He+-irradiated CoFeB/MgO films with perpendicular anisotropy , 2015 .

[42]  C. You,et al.  Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems , 2015, Nature Communications.

[43]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[44]  D. K. Pandya,et al.  Magnetization dynamics and interface studies in ion-beam sputtered Si/CoFeB(8)/MgO(4)/CoFeB(8)/Ta(5) structures , 2014 .

[45]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[46]  Rashmi,et al.  Effect of thermal annealing on Boron diffusion, micro-structural, electrical and magnetic properties of laser ablated CoFeB thin films , 2013, 1305.7335.

[47]  T. Devolder,et al.  Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films , 2013 .

[48]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[49]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[50]  Yuan-Tsung Chen,et al.  Magnetic and electric properties of amorphous Co 40 Fe 40 B 20 thin films , 2012 .

[51]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[52]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[53]  J. Woicik,et al.  Effects of annealing on the local structure of Fe and Co in CoFeB/MgO/CoFeB tunnel junctions: An extended x-ray-absorption fine structure study , 2010 .

[54]  D. Ciudad,et al.  Fe diffusion, oxidation, and reduction at the CoFeB/MgO interface studied by soft x-ray absorption spectroscopy and magnetic circular dichroism , 2010 .

[55]  Abdul K. Rumaiz,et al.  In-situ characterization of rapid crystallization of amorphous CoFeB electrodes in CoFeB/MgO/CoFeB junctions during thermal annealing , 2009 .

[56]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[57]  G. Bihlmayer,et al.  Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110) , 2008 .

[58]  C. Vittoria,et al.  Effects of Boron Addition to the Atomic Structure and Soft Magnetic Properties of FeCoB Films , 2008 .

[59]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[60]  R. Buhrman,et al.  X-ray photoemission study of CoFeB∕MgO thin film bilayers , 2007 .

[61]  Ming-Jinn Tsai,et al.  Interfacial and annealing effects on magnetic properties of CoFeB thin films , 2006 .

[62]  H. Ohno,et al.  Current-Driven Magnetization Switching in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions , 2005, INTERMAG 2006 - IEEE International Magnetics Conference.

[63]  D. Ravelosona,et al.  Tailoring magnetism by light-ion irradiation , 2004 .

[64]  T. Shen,et al.  Ion irradiation of Co/Pt multilayer films , 2003 .

[65]  Bruce D. Terris,et al.  Characterization of the magnetic modification of Co/Pt multilayer films by He+, Ar+, and Ga+ ion irradiation , 2002 .

[66]  T. Devolder,et al.  Magnetic properties ofHe+-irradiated Pt/Co/Pt ultrathin films , 2001 .

[67]  C. Platt,et al.  Magnetic and structural properties of FeCoB thin films , 2001 .

[68]  T. Devolder,et al.  X-ray absorption analysis of sputter-grown Co/Pt stackings before and after helium irradiation , 2001 .

[69]  T. Devolder Light ion irradiation of Co/Pt systems: Structural origin of the decrease in magnetic anisotropy , 2000 .

[70]  B. Hillebrands,et al.  Suppression of exchange bias by ion irradiation , 2000 .

[71]  Mt Johnson,et al.  Magnetic anisotropy in metallic multilayers , 1996 .

[72]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[73]  A. Traverse,et al.  Quantitative Description of Mixing with Light Ions , 1989 .

[74]  H. Bernas,et al.  A medium energy facility for variable temperature implantation and analysis , 1981 .