Synthetic Riboswitches: From Plug and Pray toward Plug and Play.

In synthetic biology, metabolic engineering, and gene therapy, there is a strong demand for orthogonal or externally controlled regulation of gene expression. Here, RNA-based regulatory devices represent a promising emerging alternative to proteins, allowing a fast and direct control of gene expression, as no synthesis of regulatory proteins is required. Besides programmable ribozyme elements controlling mRNA stability, regulatory RNA structures in untranslated regions are highly interesting for engineering approaches. Riboswitches are especially well suited, as they show a modular composition of sensor and response elements, allowing a free combination of different modules in a plug-and-play-like mode. The sensor or aptamer domain specifically interacts with a trigger molecule as a ligand, modulating the activity of the adjacent response domain that controls the expression of the genes located downstream, in most cases at the level of transcription or translation. In this review, we discuss the recent advances and strategies for designing such synthetic riboswitches based on natural or artificial components and readout systems, from trial-and-error approaches to rational design strategies. As the past several years have shown dramatic development in this fascinating field of research, we can give only a limited overview of the basic riboswitch design principles that is far from complete, and we apologize for not being able to consider every successful and interesting approach described in the literature.

[1]  Sang Won Lee,et al.  Ultrafast dynamics show that the theophylline and 3-methylxanthine aptamers employ a conformational capture mechanism for binding their ligands. , 2010, Biochemistry.

[2]  Bettina Appel,et al.  Thirty-five years of research into ribozymes and nucleic acid catalysis: where do we stand today? , 2016, F1000Research.

[3]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[4]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[5]  Beatrix Suess,et al.  Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity , 2010, Nucleic acids research.

[6]  Yohei Yokobayashi,et al.  Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. , 2006, RNA.

[7]  R. Breaker Riboswitches and the RNA world. , 2012, Cold Spring Harbor perspectives in biology.

[8]  S. Haas,et al.  Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses , 2012, Nucleic acids research.

[9]  Grant R. Zimmermann,et al.  Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA , 1997, Nature Structural Biology.

[10]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[11]  D. H. Burke,et al.  Low-magnesium, trans-cleavage activity by type III, tertiary stabilized hammerhead ribozymes with stem 1 discontinuities , 2005, BMC Biochemistry.

[12]  Ronny Lorenz,et al.  Design criteria for synthetic riboswitches acting on transcription , 2015, RNA biology.

[13]  Kyle E. Watters,et al.  The centrality of RNA for engineering gene expression , 2013, Biotechnology journal.

[14]  Yohei Yokobayashi,et al.  A synthetic riboswitch with chemical band-pass response. , 2010, Chemical communications.

[15]  J. Fütterer,et al.  Role of a Short Open Reading Frame in Ribosome Shunt on the Cauliflower Mosaic Virus RNA Leader* , 2000, The Journal of Biological Chemistry.

[16]  A. Pardi,et al.  Role of a heterogeneous free state in the formation of a specific RNA-theophylline complex. , 2003, Biochemistry.

[17]  Chase L. Beisel,et al.  Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing , 2010, Nucleic acids research.

[18]  Y. Yokobayashi,et al.  Posttranscriptional signal integration of engineered riboswitches yields band-pass output. , 2010, Angewandte Chemie.

[19]  R. Jackson The current status of vertebrate cellular mRNA IRESs. , 2013, Cold Spring Harbor perspectives in biology.

[20]  J W Szostak,et al.  Isolation and characterization of fluorophore-binding RNA aptamers. , 1998, Folding & design.

[21]  Christof von Kalle,et al.  Artificial riboswitches for gene expression and replication control of DNA and RNA viruses , 2014, Proceedings of the National Academy of Sciences.

[22]  J. Ouellet RNA Fluorescence with Light-Up Aptamers , 2016, Front. Chem..

[23]  Christina D Smolke,et al.  Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems , 2010, Proceedings of the National Academy of Sciences.

[24]  R. Batey,et al.  Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. , 2013, ACS synthetic biology.

[25]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[26]  T. Cech,et al.  In vitro splicing of the ribosomal RNA precursor of tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence , 1981, Cell.

[27]  É. Massé,et al.  Comparative Study between Transcriptionally- and Translationally-Acting Adenine Riboswitches Reveals Key Differences in Riboswitch Regulatory Mechanisms , 2011, PLoS genetics.

[28]  R. Breaker,et al.  Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. , 2007, RNA.

[29]  Jay D Keasling,et al.  Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression , 2011, Science.

[30]  C. Wilson,et al.  The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding , 2006, Cellular and Molecular Life Sciences.

[31]  R. Batey,et al.  Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices. , 2015, Methods in enzymology.

[32]  Irene A. Chen,et al.  The RNA World as a Model System to Study the Origin of Life , 2015, Current Biology.

[33]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[34]  J. Toscano-Garibay,et al.  RNA Aptamer Evolution: Two Decades of SELEction , 2011, International journal of molecular sciences.

[35]  Scott F. Hickey,et al.  GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP , 2015, Proceedings of the National Academy of Sciences.

[36]  Chen Chen,et al.  RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messenger Cyclic di-AMP. , 2015, Journal of the American Chemical Society.

[37]  Jason Micklefield,et al.  Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch. , 2015, Journal of the American Chemical Society.

[38]  Inna Dubchak,et al.  Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria , 2004, Genome Biology.

[39]  Yohei Yokobayashi,et al.  Engineering complex riboswitch regulation by dual genetic selection. , 2008, Journal of the American Chemical Society.

[40]  R. Breaker,et al.  Cooperative binding of effectors by an allosteric ribozyme. , 2001, Nucleic acids research.

[41]  J. Mcneil,et al.  Prediction of rho-independent transcriptional terminators in Escherichia coli. , 2001, Nucleic acids research.

[42]  J. Kim,et al.  Hepatitis C virus replication-specific inhibition of microRNA activity with self-cleavable allosteric ribozyme. , 2012, Nucleic acid therapeutics.

[43]  D. Crothers,et al.  The kinetics of ligand binding by an adenine-sensing riboswitch. , 2005, Biochemistry.

[44]  Jonathan A. Goler,et al.  Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity , 2010, Nucleic acids research.

[45]  J. Balschi,et al.  Energetics of the Na+ Pump in the Heart , 2006, Journal of cardiovascular electrophysiology.

[46]  N. Nakashima,et al.  Methionine-independent initiation of translation in the capsid protein of an insect RNA virus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Kathryn D. Smith,et al.  Interactions of the c-di-GMP riboswitch with its second messenger ligand. , 2011, Biochemical Society transactions.

[48]  T. Ellis,et al.  Using Spinach aptamer to correlate mRNA and protein levels in Escherichia coli. , 2015, Methods in enzymology.

[49]  Y. Yokobayashi,et al.  Reengineering a natural riboswitch by dual genetic selection. , 2007, Journal of the American Chemical Society.

[50]  X. Le,et al.  The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells , 2015, Journal of Molecular Evolution.

[51]  Volker A. Erdmann,et al.  Biosensor-based on-site explosives detection using aptamers as recognition elements , 2008, Analytical and bioanalytical chemistry.

[52]  R. Breaker,et al.  Riboswitches in eubacteria sense the second messenger c-di-AMP , 2013, Nature chemical biology.

[53]  Ya-Hui Lin,et al.  Rational design of a synthetic mammalian riboswitch as a ligand-responsive -1 ribosomal frame-shifting stimulator , 2016, Nucleic acids research.

[54]  A. Ellington,et al.  In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity. , 2015, ACS synthetic biology.

[55]  D. Lilley,et al.  Novel Ligands for a Purine Riboswitch Discovered by RNA-Ligand Docking , 2011, Chemistry & biology.

[56]  R. Breaker,et al.  Control of bacterial exoelectrogenesis by c-AMP-GMP , 2015, Proceedings of the National Academy of Sciences.

[57]  H. Salis,et al.  Automated physics-based design of synthetic riboswitches from diverse RNA aptamers , 2015, Nucleic acids research.

[58]  R. Breaker Prospects for riboswitch discovery and analysis. , 2011, Molecular cell.

[59]  A. Ogawa Rational construction of eukaryotic OFF-riboswitches that downregulate internal ribosome entry site-mediated translation in response to their ligands. , 2012, Bioorganic & medicinal chemistry letters.

[60]  M. Win,et al.  A modular and extensible RNA-based gene-regulatory platform for engineering cellular function , 2007, Proceedings of the National Academy of Sciences.

[61]  Tamar Schlick,et al.  Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function , 2012, PLoS Comput. Biol..

[62]  Ching-Hsiu Tsai,et al.  An atypical RNA pseudoknot stimulator and an upstream attenuation signal for −1 ribosomal frameshifting of SARS coronavirus , 2005, Nucleic acids research.

[63]  Svetlana V. Harbaugh,et al.  Integrating and amplifying signal from riboswitch biosensors. , 2015, Methods in enzymology.

[64]  Markus Wieland,et al.  Improved aptazyme design and in vivo screening enable riboswitching in bacteria. , 2008, Angewandte Chemie.

[65]  P. Stadler,et al.  De novo design of a synthetic riboswitch that regulates transcription termination , 2012, Nucleic acids research.

[66]  S. Jaffrey,et al.  RNA Mimics of Green Fluorescent Protein , 2011, Science.

[67]  Michael Müller,et al.  Thermodynamic characterization of an engineered tetracycline-binding riboswitch , 2006, Nucleic acids research.

[68]  T. Terwilliger,et al.  Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein , 2005, Nature Biotechnology.

[69]  Atsushi Ogawa,et al.  Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors. , 2011, RNA.

[70]  Barbara M. Bakker,et al.  Measuring enzyme activities under standardized in vivo‐like conditions for systems biology , 2010, The FEBS journal.

[71]  A. P. Khurchak,et al.  New polyamides with main-chain cyanine chromophores , 2011 .

[72]  J. Micklefield,et al.  Reengineering orthogonally selective riboswitches , 2010, Proceedings of the National Academy of Sciences.

[73]  J. S. Hartig,et al.  Ligand‐dependent ribozymes , 2017, Wiley interdisciplinary reviews. RNA.

[74]  G. Radda,et al.  Simultaneous Determination of Low Free Mg2+ and pH in Human Sickle Cells using 31P NMR Spectroscopy* 210 , 2002, The Journal of Biological Chemistry.

[75]  Andrew D Ellington,et al.  Group I aptazymes as genetic regulatory switches , 2002, BMC biotechnology.

[76]  Harald Schwalbe,et al.  Three-state mechanism couples ligand and temperature sensing in riboswitches , 2013, Nature.

[77]  A. Ellington,et al.  A biopolymer by any other name would bind as well: a comparison of the ligand-binding pockets of nucleic acids and proteins. , 1997, Structure.

[78]  H. Schwalbe,et al.  Multiple conformational states of riboswitches fine-tune gene regulation. , 2015, Current opinion in structural biology.

[79]  R R Breaker,et al.  Rational design of allosteric ribozymes. , 1997, Chemistry & biology.

[80]  B. Suess,et al.  A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. , 2004, Nucleic acids research.

[81]  M. Stone,et al.  In silico selection of RNA aptamers , 2009, Nucleic acids research.

[82]  Marc Vogel,et al.  Tetracycline determines the conformation of its aptamer at physiological magnesium concentrations. , 2014, Biophysical journal.

[83]  R. Breaker,et al.  Genetic Control by Metabolite‐Binding Riboswitches , 2003, Chembiochem : a European journal of chemical biology.

[84]  S. Jaffrey,et al.  Developing Fluorogenic Riboswitches for Imaging Metabolite Concentration Dynamics in Bacterial Cells. , 2016, Methods in enzymology.

[85]  S. K. Desai,et al.  Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. , 2004, Journal of the American Chemical Society.

[86]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[87]  B. Suess,et al.  Sequence Elements Distal to the Ligand Binding Pocket Modulate the Efficiency of a Synthetic Riboswitch , 2014, Chembiochem : a European journal of chemical biology.

[88]  N. Sugimoto,et al.  Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction. , 2015, Analytical chemistry.

[89]  Jerry Pelletier,et al.  Inhibition of translation by RNA-small molecule interactions. , 2002, RNA.

[90]  Svetlana V. Harbaugh,et al.  Development of a 2,4-dinitrotoluene-responsive synthetic riboswitch in E. coli cells. , 2013, ACS chemical biology.

[91]  Jeffrey E. Barrick,et al.  Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.

[92]  Jing-Dong Ye,et al.  An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches. , 2012, RNA.

[93]  Samie R. Jaffrey,et al.  A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat RNA , 2013, Nature Methods.

[94]  A. Ferré-D’Amaré,et al.  Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. , 2008, Chemistry & biology.

[95]  A. Ogawa Rational design of artificial ON-riboswitches. , 2014, Methods in molecular biology.

[96]  Barbara Fink,et al.  Conditional gene expression by controlling translation with tetracycline-binding aptamers. , 2003, Nucleic acids research.

[97]  Shana Topp,et al.  Riboswitches in unexpected places--a synthetic riboswitch in a protein coding region. , 2008, RNA.

[98]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[99]  R. Knight,et al.  Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch. , 2013, Journal of molecular biology.

[100]  Jeffrey E. Barrick,et al.  New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[101]  S. K. Desai,et al.  Synthetic Riboswitches That Induce Gene Expression in Diverse Bacterial Species , 2010, Applied and Environmental Microbiology.

[102]  Wei Huang,et al.  Linking aptamer‐ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design , 2015, Wiley interdisciplinary reviews. RNA.

[103]  Jonathan A. Goler,et al.  Chemical synthesis using synthetic biology. , 2009, Current opinion in biotechnology.

[104]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[105]  R. Micura,et al.  Ligand‐Induced Folding of the Adenosine Deaminase A‐Riboswitch and Implications on Riboswitch Translational Control , 2007, Chembiochem : a European journal of chemical biology.

[106]  J. Keasling,et al.  High-throughput metabolic engineering: advances in small-molecule screening and selection. , 2010, Annual review of biochemistry.

[107]  M. Maguire,et al.  Magnesium chemistry and biochemistry , 2002, Biometals.

[108]  Wenjiao Song,et al.  Fluorescence Imaging of Cellular Metabolites with RNA , 2012, Science.

[109]  Sven Findeiß,et al.  Design of transcription regulating riboswitches. , 2015, Methods in enzymology.

[110]  Andres Jäschke,et al.  Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer. , 2013, Angewandte Chemie.

[111]  Yann Ponty,et al.  VARNA: Interactive drawing and editing of the RNA secondary structure , 2009, Bioinform..

[112]  E. Groisman,et al.  The intricate world of riboswitches. , 2007, Current opinion in microbiology.

[113]  Christina D. Smolke,et al.  Opportunities in the design and application of RNA for gene expression control , 2016, Nucleic acids research.

[114]  Frédéric Dardel,et al.  Recombinant RNA technology: the tRNA scaffold , 2007, Nature Methods.

[115]  C. A. Kellenberger,et al.  RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. , 2013, Journal of the American Chemical Society.

[116]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[117]  Andres Jäschke,et al.  Dual-colour imaging of RNAs using quencher- and fluorophore-binding aptamers , 2015, Nucleic acids research.

[118]  Wenjiao Song,et al.  Using Spinach-based sensors for fluorescence imaging of intracellular metabolites and proteins in living bacteria , 2013, Nature Protocols.

[119]  Markus Wieland,et al.  Post-transcriptional Boolean computation by combining aptazymes controlling mRNA translation initiation and tRNA activation. , 2012, Molecular bioSystems.

[120]  Y. Kanamori,et al.  Conditional Rather than Absolute Requirements of the Capsid Coding Sequence for Initiation of Methionine-Independent Translation in Plautia stali Intestine Virus , 2003, Journal of Virology.

[121]  Chae Hyun Lim,et al.  Synthetic RNA devices to expedite the evolution of metabolite-producing microbes , 2013, Nature Communications.

[122]  Koichi Abe,et al.  Mechanism‐Guided Library Design and Dual Genetic Selection of Synthetic OFF Riboswitches , 2009, Chembiochem : a European journal of chemical biology.

[123]  Joshua K. Michener,et al.  High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. , 2012, Metabolic engineering.

[124]  Yohei Yokobayashi,et al.  An efficient platform for genetic selection and screening of gene switches in Escherichia coli , 2009, Nucleic acids research.

[125]  Michael Famulok,et al.  Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. , 2007, Chemical reviews.

[126]  Robert T. Batey,et al.  Engineering modular ‘ON’ RNA switches using biological components , 2013, Nucleic acids research.

[127]  Mark S Dunstan,et al.  Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species. , 2014, Journal of the American Chemical Society.

[128]  Christoph Flamm,et al.  Thermodynamic and kinetic folding of riboswitches. , 2015, Methods in enzymology.

[129]  Paul A. Wiggins,et al.  RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. , 2014, ACS chemical biology.

[130]  Grigory S. Filonov,et al.  Broccoli: Rapid Selection of an RNA Mimic of Green Fluorescent Protein by Fluorescence-Based Selection and Directed Evolution , 2014, Journal of the American Chemical Society.

[131]  Michael Famulok,et al.  Aptamers for allosteric regulation. , 2011, Nature chemical biology.

[132]  Beatrix Suess,et al.  Riboswitch engineering - making the all-important second and third steps. , 2015, Current opinion in biotechnology.

[133]  R. Micura,et al.  The dynamic nature of RNA as key to understanding riboswitch mechanisms. , 2011, Accounts of chemical research.

[134]  Matthias Meier,et al.  Engineering and characterization of fluorogenic glycine riboswitches , 2016, Nucleic acids research.

[135]  David H. Mathews,et al.  RNAstructure: software for RNA secondary structure prediction and analysis , 2010, BMC Bioinformatics.

[136]  Zasha Weinberg,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004, Science.

[137]  S. K. Desai,et al.  A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. , 2007, Chemistry & biology.

[138]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[139]  James M. Carothers,et al.  Informational Complexity and Functional Activity of RNA Structures , 2004, Journal of the American Chemical Society.

[140]  Sang Woo Seo,et al.  Riboselector: riboswitch-based synthetic selection device to expedite evolution of metabolite-producing microorganisms. , 2015, Methods in enzymology.

[141]  Beatrix Suess,et al.  Screening for engineered neomycin riboswitches that control translation initiation. , 2007, RNA.

[142]  Markus Wieland,et al.  Artificial ribozyme switches containing natural riboswitch aptamer domains. , 2009, Angewandte Chemie.

[143]  Alexander Revzin,et al.  Modulating endogenous gene expression of mammalian cells via RNA-small molecule interaction. , 2008, Biochemical and biophysical research communications.

[144]  A. Ferré-D’Amaré,et al.  Structural basis for activity of highly efficient RNA mimics of green fluorescent protein , 2014, Nature Structural &Molecular Biology.

[145]  Rhiju Das,et al.  Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches. , 2012, Journal of the American Chemical Society.

[146]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[147]  Samie R Jaffrey,et al.  Imaging metabolite dynamics in living cells using a Spinach-based riboswitch , 2015, Proceedings of the National Academy of Sciences.

[148]  B. Suess,et al.  Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. , 2010, Angewandte Chemie.

[149]  A. Archakov,et al.  Computer-aided design of aptamers for cytochrome p450. , 2015, Journal of structural biology.

[150]  A. Ferré-D’Amaré,et al.  Ribozymes and riboswitches: modulation of RNA function by small molecules , 2009, Biochemistry.

[151]  M. Win,et al.  Higher-Order Cellular Information Processing with Synthetic RNA Devices , 2008, Science.

[152]  Barbara Fink,et al.  Molecular analysis of a synthetic tetracycline-binding riboswitch. , 2005, RNA.

[153]  C. Berens,et al.  A tetracycline-binding RNA aptamer. , 2001, Bioorganic & medicinal chemistry.

[154]  B. Suess,et al.  Conformational dynamics of the tetracycline-binding aptamer , 2011, Nucleic acids research.

[155]  A. Pardi,et al.  High-resolution molecular discrimination by RNA. , 1994, Science.

[156]  A. Pardi,et al.  NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer. , 2009, Journal of the American Chemical Society.

[157]  J. Kieft,et al.  Structural Basis for Ribosome Recruitment and Manipulation by a Viral IRES RNA , 2006, Science.

[158]  E. Brody,et al.  Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. , 1990 .

[159]  Chase L. Beisel,et al.  Design Principles for Riboswitch Function , 2009, PLoS Comput. Biol..

[160]  R. Batey,et al.  Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. , 2006, Journal of molecular biology.

[161]  F. Narberhaus,et al.  Exploring the modular nature of riboswitches and RNA thermometers , 2016, Nucleic acids research.

[162]  Mark Ptashne,et al.  Regulation of transcription: from lambda to eukaryotes. , 2005, Trends in biochemical sciences.

[163]  Florian Groher,et al.  RNA aptamers as genetic control devices: The potential of riboswitches as synthetic elements for regulating gene expression , 2015, Biotechnology journal.

[164]  Taekjip Ha,et al.  Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells , 2015, Scientific Reports.

[165]  Christina D Smolke,et al.  High-Throughput, Data-Rich Cellular RNA Device Engineering , 2015, Nature Methods.

[166]  Samie R Jaffrey,et al.  In-gel imaging of RNA processing using broccoli reveals optimal aptamer expression strategies. , 2015, Chemistry & biology.

[167]  Christina D. Smolke,et al.  Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules , 2011, Nucleic acids research.

[168]  Beatrix Suess,et al.  Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast. , 2011, Molecular bioSystems.

[169]  M. Green,et al.  Controlling gene expression in living cells through small molecule-RNA interactions. , 1998, Science.

[170]  J. Gallivan,et al.  A family of synthetic riboswitches adopts a kinetic trapping mechanism , 2014, Nucleic acids research.

[171]  Jason T Stevens,et al.  Designing RNA-based genetic control systems for efficient production from engineered metabolic pathways. , 2015, ACS synthetic biology.

[172]  N. Pace,et al.  The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme , 1983, Cell.

[173]  Barbara Fink,et al.  Tetracycline‐aptamer‐mediated translational regulation in yeast , 2003, Molecular microbiology.

[174]  Beatrix Suess,et al.  Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators , 2012, FEBS letters.

[175]  J. Szostak,et al.  In vitro selection of functional nucleic acids. , 1999, Annual review of biochemistry.

[176]  I. Barash,et al.  The regulatory cascade that activates the Hrp regulon in Erwinia herbicola pv. gypsophilae. , 2003, Molecular plant-microbe interactions : MPMI.

[177]  Eric D Brown,et al.  A FACS‐Based Approach to Engineering Artificial Riboswitches , 2008, Chembiochem : a European journal of chemical biology.

[178]  Beatrix Suess,et al.  Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast , 2007, Nucleic acids research.

[179]  Markus Wieland,et al.  Small-molecule-dependent regulation of transfer RNA in bacteria. , 2009, Angewandte Chemie.

[180]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[181]  Beatrix Suess,et al.  What a Difference an OH Makes: Conformational Dynamics as the Basis for the Ligand Specificity of the Neomycin-Sensing Riboswitch. , 2016, Angewandte Chemie.

[182]  M. Famulok,et al.  A novel RNA motif for neomycin recognition. , 1995, Chemistry & biology.

[183]  Heinz-Jürgen Steinhoff,et al.  Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. , 2011, RNA.