Small Normalized Boolean Circuits for Semi-disjoint Bilinear Forms Require Logarithmic Conjunction-depth

We consider normalized Boolean circuits that use binary operations of disjunction and conjunction, and unary negation, with the restriction that negation can be only applied to input variables. We derive a lower bound trade-off between the size of normalized Boolean circuits computing Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., the maximum number of and-gates on a directed path to an output gate). In particular, we show that any normalized Boolean circuit of at most ϵlogn conjunction-depth computing the n-dimensional Boolean vector convolution has ω(n2−4ϵ) and-gates. Analogously, any normalized Boolean circuit of at most ϵlogn conjunction-depth computing the n × n Boolean matrix product has ω(n3−4ϵ) and-gates. We complete our lower-bound trade-offs with upper-bound trade-offs of similar form yielded by the known fast algebraic algorithms.

[1]  Jürgen Weiss,et al.  An n^3/2 Lower Bound on the Monotone Network Complexity of the Boolean Convolution , 1984, Inf. Control..

[2]  M. Fischer,et al.  STRING-MATCHING AND OTHER PRODUCTS , 1974 .

[3]  Norbert Blum,et al.  On Negations in Boolean Networks , 2009, Efficient Algorithms.

[4]  V. Strassen Gaussian elimination is not optimal , 1969 .

[5]  Claus-Peter Schnorr,et al.  A Lower Bound on the Number of Additions in Monotone Computations , 1976, Theor. Comput. Sci..

[6]  Larisa Rybak,et al.  Synthesis of Parallel Robots Optimal Motion Trajectory Planning Algorithms , 2019 .

[7]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[8]  Uri Zwick,et al.  All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.

[9]  Kazuo Iwama,et al.  An Explicit Lower Bound of 5n - o(n) for Boolean Circuits , 2002, MFCS.

[10]  Leslie G. Valiant,et al.  Negation can be exponentially powerful , 1979, Theor. Comput. Sci..

[11]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[12]  Claus-Peter Schnorr Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen , 2005, Computing.

[13]  Mike Paterson,et al.  Complexity of Monotone Networks for Boolean Matrix Product , 1974, Theor. Comput. Sci..

[14]  Ran Raz,et al.  Explicit lower bound of 4.5n - o(n) for boolena circuits , 2001, STOC '01.

[15]  Kurt Mehlhorn,et al.  Monotone Switching Circuits and Boolean Matrix Product , 1975, MFCS.

[16]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[17]  Ran Raz,et al.  On the complexity of matrix product , 2002, STOC '02.

[18]  Edmund A. Lamagna,et al.  The Complexity of Monotone Networks for Certain Bilinear Forms, Routing Problems, Sorting, and Merging , 1979, IEEE Transactions on Computers.

[19]  Vaughan R. Pratt,et al.  The power of negative thinking in multiplying Boolean matrices , 1974, STOC '74.

[20]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[21]  Andrzej Lingas,et al.  Towards an Almost Quadratic Lower Bound on the Monotone Circuit Complexity of the Boolean Convolution , 2017, TAMC.

[22]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[23]  Leslie G. Valiant,et al.  Shifting Graphs and Their Applications , 1976, J. ACM.

[24]  Igor S. Sergeev,et al.  Thin circulant matrices and lower bounds on the complexity of some Boolean operators , 2017, ArXiv.