Fluoxetine facilitates use-dependent excitability of human primary motor cortex

[1]  B. Pleger,et al.  Amphetamine enhances training‐induced motor cortex plasticity , 2004, Acta neurologica Scandinavica.

[2]  H. Dinse,et al.  Functional Imaging of Perceptual Learning in Human Primary and Secondary Somatosensory Cortex , 2003, Neuron.

[3]  H. Dinse,et al.  Pharmacological Modulation of Perceptual Learning and Associated Cortical Reorganization , 2003, Science.

[4]  Patrick Ragert,et al.  Pharmacological suppression of plastic changes in human primary somatosensory cortex after motor learning , 2003, Experimental Brain Research.

[5]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[6]  U. Ziemann,et al.  Complex modulation of human motor cortex excitability by the specific serotonin re-uptake inhibitor sertraline , 2002, Neuroscience Letters.

[7]  F. Chollet,et al.  Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke , 2001, Annals of neurology.

[8]  B. Pleger,et al.  Repetitive training of a synchronised movement induces short-term plastic changes in the human primary somatosensory cortex , 2001, Neuroscience Letters.

[9]  B. Jacobs,et al.  Activity of Serotonergic Neurons in Behaving Animals , 1999, Neuropsychopharmacology.

[10]  J. Liepert,et al.  Motor plasticity induced by synchronized thumb and foot movements , 1999, Experimental Brain Research.

[11]  P. Tonin,et al.  Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy. , 1996, Stroke.

[12]  J. Stolzenburg,et al.  Further evidence that fluoxetine interacts with a 5-HT2C receptor in glial cells , 1995, Brain Research Bulletin.

[13]  W. O. Friesen,et al.  Modulation of swimming behavior in the medicinal leech , 1994, Journal of Comparative Physiology A.

[14]  J. Hietala,et al.  Up-regulation of β1-adrenergic receptors in rat brain after chronic citalopram and fluoxetine treatments , 1994, Psychopharmacology.

[15]  D. Glanzman Postsynaptic regulation of the development and long-term plasticity of Aplysia sensorimotor synapses in cell culture. , 1994, Journal of neurobiology.

[16]  A. Altamura,et al.  Clinical Pharmacokinetics of Fluoxetine , 1994, Clinical pharmacokinetics.

[17]  P. Hrdina,et al.  Chronic fluoxetine treatment upregulates 5‐HT uptake sites and 5‐HT2 receptors in rat brain: An autoradiographic study , 1993, Synapse.

[18]  Fukuda Hideomi,et al.  5-HT2/5-HT1C receptor-mediated facilitatory action on unit activity of ventral horn cells in rat spinal cord slices. , 1992 .

[19]  F. Clarac,et al.  Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. , 1992, The Journal of physiology.

[20]  S. Rossignol,et al.  Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs , 1991, Brain Research.

[21]  C. Bowden,et al.  Fluoxetine: A Serotonin‐specific, Second‐generation Antidepressant , 1987, Pharmacotherapy.

[22]  D. Bieger Role of bulbar serotonergic neurotransmission in the initiation of swallowing in the rat , 1981, Neuropharmacology.

[23]  J. Liepert,et al.  Pharmacological modulation of training-induced plastic changes in human motor cortex. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[24]  M. Hallett,et al.  Plasticity of motor cortex elicited by training to perform simultaneous movements of hand and shoulder: preliminary results , 1997 .

[25]  T. Cooper,et al.  Human brain fluoxetine concentrations. , 1993, The Journal of neuropsychiatry and clinical neurosciences.