Deterministic Global Optimization in Nonlinear Optimal Control Problems

The accurate solution of optimal control problems is crucial in many areas of engineering and applied science. For systems which are described by a nonlinear set of differential-algebraic equations, these problems have been shown to often contain multiple local minima. Methods exist which attempt to determine the global solution of these formulations. These algorithms are stochastic in nature and can still get trapped in local minima. There is currently no deterministic method which can solve, to global optimality, the nonlinear optimal control problem. In this paper a deterministic global optimization approach based on a branch and bound framework is introduced to address the nonlinear optimal control problem to global optimality. Only mild conditions on the differentiability of the dynamic system are required. The implementa-tion of the approach is discussed and computational studies are presented for four control problems which exhibit multiple local minima.

[1]  Julio R. Banga,et al.  Global Optimization of Chemical Processes using Stochastic Algorithms , 1996 .

[2]  Chyi Hwang,et al.  OPTIMAL CONTROL COMPUTATION FOR DIFFERENTIAL-ALGEBRAIC PROCESS SYSTEMS WITH GENERAL CONSTRAINTS , 1990 .

[3]  R. Luus Optimal control by dynamic programming using systematic reduction in grid size , 1990 .

[4]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[5]  O. A. Asbjornsen,et al.  Simultaneous optimization and solution of systems described by differential/algebraic equations , 1987 .

[6]  S. A. Dadebo,et al.  Dynamic optimization of constrained chemical engineering problems using dynamic programming , 1995 .

[7]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[8]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[9]  Jeffery S. Logsdon,et al.  Accurate solution of differential-algebraic optimization problems , 1989 .

[10]  W. Hager,et al.  Optimal Control: Theory, Algorithms, and Applications , 1998 .

[11]  F.-X. Litt,et al.  IMPLEMENTATION OF SPLINE APPROXIMATIONS ALGORITHMS IN NUMERICAL OPTIMAL CONTROL , 1984 .

[12]  D. E. Cormack,et al.  Multiplicity of solutions resulting from the use of variational methods in optimal control problems , 1972 .

[13]  Julio R. Banga,et al.  Stochastic optimization for optimal and model-predictive control , 1998 .

[14]  Jacques Vlassenbroeck,et al.  A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..

[15]  Alexander S. Strekalovsky,et al.  On Global Search for Non-Convex Optimal Control Problems , 1997 .

[16]  C. Neuman,et al.  A suboptimal control algorithm for constrained problems using cubic splines , 1973 .

[17]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[18]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[19]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[20]  R. Luus,et al.  Evaluation of the parameters used in iterative dynamic programming , 1993 .

[21]  R. Luus,et al.  Multiplicity of solutions in the optimization of a bifunctional catalyst blend in a tubular reactor , 1992 .

[22]  Rein Luus,et al.  Application of dynamic programming to final state constrained optimal control problems , 1991 .

[23]  J. E. Cuthrell,et al.  On the optimization of differential-algebraic process systems , 1987 .

[24]  Julio R. Banga,et al.  A hybrid method for the optimal control of chemical processes , 1998 .

[25]  William R. Cluett,et al.  A comparison of collocation methods for solving dynamic optimization problems , 1995 .

[26]  R. Luus,et al.  Optimal Control of Inequality State Constrained Systems , 1997 .

[27]  R. Luus,et al.  Optimization of Fed-Batch Reactors by the Luus−Jaakola Optimization Procedure , 1999 .

[28]  T. H. I. Jaakola,et al.  Optimization by direct search and systematic reduction of the size of search region , 1973 .

[29]  W. E. Stewart,et al.  Sensitivity analysis of initial value problems with mixed odes and algebraic equations , 1985 .

[30]  Ji-Pyng Chiou,et al.  Computation of optimal control for integral and differential-algebraic systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[31]  R.W.H. Sargent,et al.  Off Line Computation of Optimum Controls for a Plate Distillation Column* Calcul en dehors du circuit des commandes optimales pour une colonne de distillation h plateaux Off-line-Berechnung optimaler Regelungen f'tir den Boden einer Destillationskolonne , 1970 .

[32]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[33]  Rein Luus,et al.  Global optimization of the bifunctional catalyst problem , 1994 .

[34]  C. Storey,et al.  Application of Stochastic Global Optimization Algorithms to Practical Problems , 1997 .

[35]  Julio R. Banga,et al.  Stochastic Dynamic Optimization of Batch and Semicontinuous Bioprocesses , 1997 .

[36]  D. Himmelblau,et al.  Optimal control via collocation and non-linear programming , 1975 .

[37]  R. Luus,et al.  Global optimization approach to nonlinear optimal control , 1992 .

[38]  Constantinos C. Pantelides,et al.  Global Optimisation of General Process Models , 1996 .

[39]  J. Banga,et al.  Dynamic Optimization of Batch Reactors Using Adaptive Stochastic Algorithms , 1997 .

[40]  G. R. Sullivan,et al.  The development of an efficient optimal control package , 1978 .

[41]  Rein Luus,et al.  Iterative dynamic programming , 2019, Iterative Dynamic Programming.

[42]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[43]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .

[44]  R. Luus Piecewise linear continuous optimal control by iterative dynamic programming , 1993 .

[45]  Kok Lay Teo,et al.  Control parametrization: A unified approach to optimal control problems with general constraints , 1988, Autom..

[46]  Ji-Pyng Chiou,et al.  Optimal control and optimal time location problems of differential-algebraic systems by differential evolution , 1997 .

[47]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .

[48]  L. Pontryagin,et al.  Ordinary differential equations , 1964 .

[49]  Christodoulos A. Floudas,et al.  A global optimization method, αBB, for process design , 1996 .