Symmetric and reversible solid oxide fuel cells

In the past few years a novel concept of Solid Oxide Fuel Cells (SOFC) has been developed: the symmetrical Solid Oxide Fuel Cells (SSOFC). In this configuration, the same electrode material is used as anode and cathode. Several state-of-the-art SOFC electrode materials have been tested and optimised to operate in such a novel configuration, as is the case of the lanthanum chromites traditionally used as interconnect materials, lanthanum chromium manganites and strontium titanates generally used as anodes and lanthanum manganites typically used as cathodes. Fuel cell performances of approximately 800 mW cm−2 and ∼500 mW cm−2 under H2 and CH4 atmospheres have been obtained using some of these materials in symmetric configuration. Moreover, promising performances have also been reported for interconnect-based materials under city gas containing the impurity H2S. An interesting feature of the compositions evaluated is their potential use as symmetrical electrodes for Solid Oxide Electrolysis Cells (SOEC) with efficiencies in the range of the conventional SOEC systems, i.e. LSM-YSZ/YSZ/Ni-YSZ. Hence, they may be considered all-in-one Symmetric and Reversible SOFCs (SR-SOFCs) with significant advantages compared to traditional configurations, regarding both fabrication and maintenance/operation. In this review, we provide an insight into the most common materials tested as symmetrical electrodes for SOFCs and SOECs, electrolytes employed, configurations tested, new fabrication processes and procedures for microstructural engineering.

[1]  R. Mukundan,et al.  Sulfur Tolerant Anodes for SOFCs , 2004 .

[2]  Wuzong Zhou,et al.  Sc-Substituted Oxygen Excess Titanates as Fuel Electrodes for SOFCs , 2005 .

[3]  Craig A. J. Fisher,et al.  Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. , 2010, Chemical Society reviews.

[4]  M. Zahid,et al.  High temperature water electrolysis in solid oxide cells , 2008 .

[5]  Chenghao Yang,et al.  Perovskite Sr2Fe1.5Mo0.5O6−δ as electrode materials for symmetrical solid oxide electrolysis cells , 2010 .

[6]  J. Irvine,et al.  La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam , 2008 .

[7]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[8]  V. Kharton,et al.  Transport, thermomechanical, and electrode properties of perovskite-type $$ {\left( {{\hbox{L}}{{\hbox{a}}_{0.{75} - x}}{\hbox{S}}{{\hbox{r}}_{0.{25} + x}}} \right)_{0.{95}}}{\hbox{M}}{{\hbox{n}}_{0.{5}}}{\hbox{C}}{{\hbox{r}}_{0.{5} - x}}{\hbox{T}}{{\hbox{i}}_x}{{\hbox{O}}_{{3} - }}_\delta \left( {x , 2011 .

[9]  L. Gauckler,et al.  Micro Solid Oxide Fuel Cells on Glass Ceramic Substrates , 2008 .

[10]  Toshio Suzuki,et al.  Impact of Anode Microstructure on Solid Oxide Fuel Cells , 2009, Science.

[11]  P. Slater,et al.  Development of apatite-type oxide ion conductors. , 2004, Chemical record.

[12]  J. Canales‐Vázquez,et al.  An all-in-one flourite-based symmetrical solid oxide fuel cell , 2008 .

[13]  S. Deevi,et al.  Development of interconnect materials for solid oxide fuel cells , 2003 .

[14]  Hyuk Kim,et al.  Fabrication of Highly Porous Yttria-Stabilized Zirconia by Acid Leaching Nickel from a Nickel- Yttria-Stabilized Zirconia Cermet , 2002 .

[15]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[16]  Fritz B. Prinz,et al.  High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation , 2007 .

[17]  O. Joubert,et al.  New SOFC electrode materials: The Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5 − xNix)O3 − δ and (La0.75Sr0.25)(Cr0.5 − xNixMn0.5)O3 − δ , 2010 .

[18]  Dimos Poulikakos,et al.  A micro-solid oxide fuel cell system as battery replacement , 2008 .

[19]  G. Gauthier,et al.  Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC anode or SOEC cathode materials , 2011 .

[20]  J. Irvine,et al.  Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3 − δ , 2007 .

[21]  J. Ruiz-Morales,et al.  Applicability of La2Mo2−yWyO9 materials as solid electrolyte for SOFCs , 2007 .

[22]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[23]  S. Jiang,et al.  A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells , 2006 .

[24]  J. Sfeir LaCrO3-based anodes: stability considerations , 2003 .

[25]  Xingbao Zhu,et al.  A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods , 2011 .

[26]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[27]  K. P. Ong,et al.  Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells , 2008 .

[28]  A. Jacobson,et al.  Electrical Conductivity and Oxygen Nonstoichiometry of La0.2Sr0.8Fe0.55Ti0.45O3-δ , 2005 .

[29]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[30]  S. Haile,et al.  The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate , 1997 .

[31]  D. P. Fagg,et al.  Stability and mixed ionic–electronic conductivity of (Sr,La)(Ti,Fe)O3−δ perovskites , 2003 .

[32]  John T. S. Irvine,et al.  LSCM–(YSZ–CGO) composites as improved symmetrical electrodes for solid oxide fuel cells , 2007 .

[33]  F. Chen,et al.  A Novel Electrode Material for Symmetrical SOFCs , 2010, Advanced materials.

[34]  F. Chen,et al.  Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles , 2011 .

[35]  P. Gómez‐Romero,et al.  Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs) , 2007 .

[36]  P. Slater,et al.  New Chemical Systems for Solid Oxide Fuel Cells , 2010 .

[37]  A. J. D. santos-García,et al.  Studies on Perovskite-based electrodes for symmetrical SOFCs , 2008 .

[38]  J. Fergus Lanthanum chromite-based materials for solid oxide fuel cell interconnects , 2004 .

[39]  J. Canales‐Vázquez,et al.  Preparation of thin layer materials with macroporous microstructure for SOFC applications , 2008 .

[40]  Z. Lü,et al.  A Novel Interconnect Material for SOFCs , 2005 .

[41]  S. Sofie,et al.  A symmetrical, planar SOFC design for NASA's high specific power density requirements , 2007 .

[42]  J. Canales‐Vázquez,et al.  Electrical properties in La2Sr4Ti6O19$minus;$delta;: a potential anode for high temperature fuel cells , 2003 .

[43]  K. Kendall,et al.  Mixed-reactant, micro-tubular solid oxide fuel cells: An experimental study , 2009 .

[44]  Shriram Ramanathan,et al.  Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 (LSCF/YSZ/LSCF) symmetric thin film solid oxide fuel cells , 2011 .

[45]  Michael D. Gross,et al.  A Strategy for Achieving High-performance with SOFC Ceramic Anodes , 2007 .

[46]  G. Meng,et al.  Preparation of Nd-doped BaCeO3 proton-conducting ceramic and its electrical properties in different atmospheres , 1998 .

[47]  D. P. Fagg,et al.  Redox behavior and transport properties of La0.5−xSr0.5−xFe0.4Ti0.6O3−δ (0 , 2002 .

[48]  Juan Carlos Ruiz-Morales,et al.  On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells , 2006 .

[49]  S. Zha,et al.  Dual‐Scale Porous Electrodes for Solid Oxide Fuel Cells from Polymer Foams , 2005 .

[50]  H. Iwahara,et al.  Effect of ionic radii of dopants on mixed ionic conduction (H++O2−) in BaCeO3-based electrolytes , 1994 .

[51]  A. Jacobson,et al.  Thermal and chemical expansion properties of La0.2Sr0.8Fe0.55Ti0.45O3−x , 2005 .

[52]  T. He,et al.  La0.7Ca0.3CrO3-Ce0.8Gd0.2O1.9 composites as symmetrical electrodes for solid-oxide fuel cells , 2011 .

[53]  J. Ruiz-Morales,et al.  Structural and electrochemical characterisation of Pr0.7Ca0.3Cr1−yMnyO3−δ as symmetrical solid oxide fuel cell electrodes , 2009 .

[54]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[55]  N. Xanthopoulos,et al.  Lanthanum Chromite Based Catalysts for Oxidation of Methane Directly on SOFC Anodes , 2001 .

[56]  Andrew J. Eckel,et al.  Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design , 2011 .

[57]  V. Kharton,et al.  Ion and electron conduction in SrFe1- xScxO3- δ , 2006 .

[58]  J. Canales‐Vázquez,et al.  Mn-substituted titanates as efficient anodes for direct methane SOFCs , 2006 .

[59]  J. Canales‐Vázquez,et al.  Lanthanum chromite materials as potential symmetrical electrodes for Solid Oxide Fuel Cells , 2007 .

[60]  T. Jardiel,et al.  Electrochemical properties of novel SOFC dual electrode La0.75Sr0.25Cr0.5Mn0.3Ni0.2O3−δ , 2011 .

[61]  T. He,et al.  Nanostructured GDC-impregnated La0.7Ca0.3CrO3−δ symmetrical electrodes for solid oxide fuel cells operating on hydrogen and city gas , 2011 .

[62]  J. Ruiz-Morales,et al.  Performance of XSCoF (X = Ba, La and Sm) and LSCrX′ (X′ = Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC , 2007 .

[63]  J. Canales‐Vázquez,et al.  Electrical conductivity and redox stability of La2Mo2−xWxO9 materials , 2005 .

[64]  Wuzong Zhou,et al.  Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation , 2006, Nature.

[65]  Wuzong Zhou,et al.  A new anode for solid oxide fuel cells with enhanced OCV under methane operation. , 2007, Physical chemistry chemical physics : PCCP.

[66]  J. Irvine,et al.  Potential electrode materials for symmetrical Solid Oxide Fuel Cells , 2008 .

[67]  Y. Sadaoka,et al.  Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3(Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb) , 1995 .

[68]  J. Irvine,et al.  Synthesis and Characterization of ( La0.75Sr0.25 ) Cr0.5Mn0.5 O 3 − δ , a Redox-Stable, Efficient Perovskite Anode for SOFCs , 2004 .

[69]  N. Sammes,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[70]  S. Jiang,et al.  Characterization of doped La0.7A0.3Cr0.5Mn0.5O3 − δ (A = Ca, Sr, Ba) electrodes for solid oxide fuel cells , 2009 .

[71]  T. Kudo,et al.  Mixed Electrical Conduction in the Fluorite‐Type Ce1 − x Gd x O 2 − x / 2 , 1976 .

[72]  Bin Lin,et al.  An anode-supported micro-tubular solid oxide fuel cell with redox stable composite cathode , 2010 .

[73]  Dmitry Medvedev,et al.  Investigation of the protonic conduction in Sm doped BaCeO3 , 2008 .

[74]  Hui Xiong,et al.  An experimental investigation into micro-fabricated solid oxide fuel cells with ultra-thin La0.6Sr0.4Co0.8Fe0.2O3 cathodes and yttria-doped zirconia electrolyte films , 2009 .

[75]  P. Muralt,et al.  Solid oxide fuel cell membranes supported by nickel grid anode , 2008 .

[76]  Naijuan Wu,et al.  Nanostructured thin solid oxide fuel cells with high power density. , 2008, Dalton Transactions.

[77]  J. Vohs,et al.  Engineering Composite Oxide SOFC Anodes for Efficient Oxidation of Methane , 2008 .

[78]  S. Jiang,et al.  Lanthanum strontium manganese chromite cathode and anode synthesized by gel-casting for solid oxide fuel cells , 2007 .

[79]  K. Knight,et al.  Ionic conductivity of gadolinium-doped barium cerate perovskites , 1989 .

[80]  S. Ramanathan,et al.  Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations , 2011 .

[81]  Yvon Laligant,et al.  Designing fast oxide-ion conductors based on La2Mo2O 9 , 2000, Nature.

[82]  Juan Carlos Ruiz-Morales,et al.  Engineering of materials for solid oxide fuel cells and other energy and environmental applications , 2010 .

[83]  John T. S. Irvine,et al.  A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes , 2006 .

[84]  Jennifer L. M. Rupp,et al.  Review on microfabricated micro-solid oxide fuel cell membranes , 2009 .

[85]  J. Canales‐Vázquez,et al.  Microstructural optimisation of materials for SOFC applications using PMMA microspheres , 2006 .

[86]  J. Stevenson,et al.  Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate , 2002 .

[87]  P. Slater,et al.  A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26 , 2001 .

[88]  Zongping Shao,et al.  A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode , 2009 .

[89]  G. Meng,et al.  Simple solid oxide fuel cells , 2010 .

[90]  J. Irvine,et al.  Synthesis and characterization of (Pr0.75Sr0.25)1 − xCr0.5Mn0.5O3 − δ as anode for SOFCs , 2010 .

[91]  Brian L. Wardle,et al.  Nonlinear thermomechanical design of microfabricated thin plate devices in the post-buckling regime , 2010 .

[92]  Juan Carlos Ruiz-Morales,et al.  Evaluation of apatite silicates as solid oxide fuel cell electrolytes , 2010 .