Stable Neo-Hookean Flesh Simulation

Nonlinear hyperelastic energies play a key role in capturing the fleshy appearance of virtual characters. Real-world, volume-preserving biological tissues have Poisson’s ratios near 1/2, but numerical simulation within this regime is notoriously challenging. In order to robustly capture these visual characteristics, we present a novel version of Neo-Hookean elasticity. Our model maintains the fleshy appearance of the Neo-Hookean model, exhibits superior volume preservation, and is robust to extreme kinematic rotations and inversions. We obtain closed-form expressions for the eigenvalues and eigenvectors of all of the system’s components, which allows us to directly project the Hessian to semipositive definiteness, and also leads to insights into the numerical behavior of the material. These findings also inform the design of more sophisticated hyperelastic models, which we explore by applying our analysis to Fung and Arruda-Boyce elasticity. We provide extensive comparisons against existing material models.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[3]  Ronald K. Thornton,et al.  Real-Time Physics , 1998 .

[4]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[5]  Henry Fuchs,et al.  An implicit finite element method for elastic solids in contact , 2001, Proceedings Computer Animation 2001. Fourteenth Conference on Computer Animation (Cat. No.01TH8596).

[6]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[7]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  S. Delp,et al.  A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. , 2005, Journal of biomechanics.

[9]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[10]  Hujun Bao,et al.  Subspace dynamic simulation using rotation-strain coordinates , 2015, ACM Trans. Graph..

[11]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[12]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[13]  Markus H. Gross,et al.  A versatile and robust model for geometrically complex deformable solids , 2004, Proceedings Computer Graphics International, 2004..

[14]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[15]  J. G. Simmonds A brief on tensor analysis , 1982 .

[16]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[17]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[18]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[19]  N. Higham Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .

[20]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[21]  M. A. Jenkins,et al.  A three-stage variable-shift iteration for polynomial zeros and its relation to generalized rayleigh iteration , 1970 .

[22]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[23]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[24]  Eftychios Sifakis,et al.  Fast and Robust Inversion‐Free Shape Manipulation , 2016, Comput. Graph. Forum.

[25]  Nobuyuki Umetani,et al.  Position-based elastic rods , 2014, SCA '14.

[26]  A. Bower Applied Mechanics of Solids , 2009 .

[27]  Yin Yang,et al.  Descent methods for elastic body simulation on the GPU , 2016, ACM Trans. Graph..

[28]  Matthias Teschner,et al.  Inversion handling for stable deformable modeling , 2008, The Visual Computer.

[29]  Rüdiger Westermann,et al.  Corotated Finite Elements Made Fast and Stable , 2008, VRIPHYS.

[30]  Eftychios Sifakis,et al.  Non-manifold level sets , 2015, ACM Trans. Graph..

[31]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[32]  Antonio Susín,et al.  Robust Treatment of Degenerate Elements in Interactive Corotational FEM Simulations , 2014, Comput. Graph. Forum.

[33]  Christopher D. Twigg,et al.  Point Cloud Glue: constraining simulations using the procrustes transform , 2010, SCA '10.

[34]  Hongyi Xu,et al.  Nonlinear material design using principal stretches , 2015, ACM Trans. Graph..

[35]  Elaine Cohen,et al.  Animation of Deformable Bodies with Quadratic Bézier Finite Elements , 2014, ACM Trans. Graph..

[36]  T. Tao,et al.  Honeycombs and sums of Hermitian matrices , 2000, math/0009048.

[37]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[38]  Ronald Fedkiw,et al.  PhysBAM: physically based simulation , 2011, SIGGRAPH '11.

[39]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[40]  Karl Rupp,et al.  ViennaCL-A High Level Linear Algebra Library for GPUs and Multi-Core CPUs , 2010 .

[41]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[42]  Lei Xu,et al.  A three-dimensional constitutive model for the martensitic transformation in polycrystalline shape memory alloys under large deformation , 2019, Smart Materials and Structures.

[43]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[44]  Sophia Mã ¶ ller,et al.  Biomechanics — Mechanical properties of living tissue , 1982 .

[45]  Rahul Narain,et al.  ADMM ⊇ projective dynamics: fast simulation of general constitutive models , 2016, Symposium on Computer Animation.

[46]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[47]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[48]  Doug L. James,et al.  Real time physics: class notes , 2008, SIGGRAPH '08.

[49]  Motoji Yamamoto,et al.  An edge-based computationally efficient formulation of Saint Venant-Kirchhoff tetrahedral finite elements , 2009, ACM Trans. Graph..

[50]  Jan Bender,et al.  Position-Based Simulation Methods in Computer Graphics , 2015, Eurographics.