An evaluation of methods for modelling species distributions

Aim  Various statistical techniques have been used to model species probabilities of occurrence in response to environmental conditions. This paper provides a comprehensive assessment of methods and investigates whether errors in model predictions are associated to specific kinds of geographical and environmental distributions of species.

[1]  R. Macarthur ON THE RELATIVE ABUNDANCE OF BIRD SPECIES. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[2]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[3]  N. Perrin Contribution à l'écologie du genre Cepaea (Gastropoda) : approche descriptive et expérimentale de l'habitat et de la niche écologique , 1985 .

[4]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[5]  K. D. Cocks,et al.  Using mathematical programming to address the multiple reserve selection problem: An example from the Eyre Peninsula, South Australia , 1989 .

[6]  D. A. Saunders,et al.  Nature conservation : the role of remnants of native vegetation , 1989 .

[7]  P. Walker Modelling wildlife distributions using a geographic information system: kangaroos in relation to climate , 1990 .

[8]  R. Itami,et al.  GIS-based habitat modeling using logistic multiple regression : a study of the Mt. Graham red squirrel , 1991 .

[9]  Daryl Pregibon,et al.  Tree-based models , 1992 .

[10]  R. Leemans,et al.  Comparing global vegetation maps with the Kappa statistic , 1992 .

[11]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[12]  Paul E. Smith,et al.  Autocorrelation in the logistic regression modelling of species distributions , 1994 .

[13]  A. Fielding,et al.  Testing the Generality of Bird‐Habitat Models , 1995 .

[14]  S. T. Buckland,et al.  An autologistic model for the spatial distribution of wildlife , 1996 .

[15]  Frederik P. Agterberg,et al.  Interactive spatial data analysis , 1996 .

[16]  I. Dimopoulos,et al.  Application of neural networks to modelling nonlinear relationships in ecology , 1996 .

[17]  K. Gaston,et al.  Species-range-size distributions: patterns, mechanisms and implications. , 1996, Trends in ecology & evolution.

[18]  Des B. A. Thompson,et al.  Predicting the spatial distribution of buzzard Buteo buteo nesting areas using a geographical information system and remote sensing , 1996 .

[19]  S. Lek,et al.  The use of artificial neural networks to predict the presence of small‐bodied fish in a river , 1997 .

[20]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[21]  R. Alkemade,et al.  Determining alternative models for vegetation response analysis: a non‐parametric approach , 1998 .

[22]  J. Franklin Predicting the distribution of shrub species in southern California from climate and terrain‐derived variables , 1998 .

[23]  R. Beeton,et al.  Building better wildlife‐habitat models , 1999 .

[24]  S. Manel,et al.  Alternative methods for predicting species distribution: an illustration with Himalayan river birds , 1999 .

[25]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[26]  David R. B. Stockwell,et al.  The GARP modelling system: problems and solutions to automated spatial prediction , 1999, Int. J. Geogr. Inf. Sci..

[27]  Uygar Özesmi,et al.  An artificial neural network approach to spatial habitat modelling with interspecific interaction , 1999 .

[28]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[29]  O. Vetaas Comparing species temperature response curves: population density versus second‐hand data , 2000 .

[30]  Paul H. Williams,et al.  Using probability of persistence to identify important areas for biodiversity conservation , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  G. Cumming Using between‐model comparisons to fine‐tune linear models of species ranges , 2000 .

[32]  Miguel B. Araújo,et al.  Selecting areas for species persistence using occurrence data , 2000 .

[33]  P. Donald,et al.  Local extinction of British farmland birds and the prediction of further loss , 2000 .

[34]  S. Ferrier,et al.  An evaluation of alternative algorithms for fitting species distribution models using logistic regression , 2000 .

[35]  G. De’ath,et al.  CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS , 2000 .

[36]  R. Plant,et al.  Classification trees: An alternative non‐parametric approach for predicting species distributions , 2000 .

[37]  J. Greenwood,et al.  Spatial patterns of range contraction in British breeding birds , 2001 .

[38]  S. Manel,et al.  Evaluating presence-absence models in ecology: the need to account for prevalence , 2001 .

[39]  D. Lindenmayer,et al.  Towards a hierarchical framework for modelling the spatial distribution of animals , 2001 .

[40]  A. Hirzel Linking landscape- and population ecology for large population management modelling: the case of Ibex (capra ibex) in Switzerland , 2001 .

[41]  M. Araújo,et al.  The Bias of Complementarity Hotspots toward Marginal Populations , 2001 .

[42]  L. Boitani,et al.  Research Techniques in Animal Ecology: Controversies and Consequences , 2001 .

[43]  Patricia L. Smith,et al.  Geostatistical Error Management: Quantifying Uncertainty for Environmental Sampling and Mapping , 2001, Technometrics.

[44]  S. Ferrier,et al.  An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales. , 2001, Journal of environmental management.

[45]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[46]  J. Elith,et al.  Predictions and their validation: Rare plants in the Central Highlands, Victoria, Australia , 2002 .

[47]  A. Peterson,et al.  Prediction of bird community composition based on point‐occurrence data and inferential algorithms: a valuable tool in biodiversity assessments , 2002 .

[48]  T. Dawson,et al.  SPECIES: A Spatial Evaluation of Climate Impact on the Envelope of Species , 2002 .

[49]  M. Araújo,et al.  Apples, Oranges, and Probabilities: Integrating Multiple Factors into Biodiversity Conservation with Consistency , 2002 .

[50]  J. Michael Scott,et al.  Predicting Species Occurrences: Issues of Accuracy and Scale , 2002 .

[51]  Julian D. Olden,et al.  Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks , 2002 .

[52]  Paul H. Williams,et al.  Dynamics of extinction and the selection of nature reserves , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  S. Lavorel,et al.  Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales , 2003 .

[54]  N. Gotelli Predicting Species Occurrences: Issues of Accuracy and Scale , 2003 .

[55]  W. Thuiller BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change , 2003 .

[56]  G. Carpenter,et al.  DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals , 1993, Biodiversity & Conservation.

[57]  A. Solow,et al.  The value of information in reserve site selection , 2001, Biodiversity & Conservation.

[58]  Paul H. Williams,et al.  Downscaling European species atlas distributions to a finer resolution: implications for conservation planning , 2005 .