Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties.

[1]  Andrew Z. Wang,et al.  Bio‐nano interface: The impact of biological environment on nanomaterials and their delivery properties , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[2]  Morteza Mahmoudi,et al.  Biological Identity of Nanoparticles In Vivo: Clinical Implications of the Protein Corona. , 2017, Trends in biotechnology.

[3]  K. Dawson,et al.  The Intracellular Destiny of the Protein Corona: A Study on its Cellular Internalization and Evolution. , 2016, ACS nano.

[4]  M. Mahmoudi,et al.  Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. , 2016, Biomaterials.

[5]  S. Stolte,et al.  The nanoparticle biomolecule corona: lessons learned - challenge accepted? , 2015, Chemical Society reviews.

[6]  K. Hamad-Schifferli,et al.  Exploiting the novel properties of protein coronas: emerging applications in nanomedicine. , 2015, Nanomedicine.

[7]  Christoffer Åberg,et al.  Mapping protein binding sites on the biomolecular corona of nanoparticles. , 2015, Nature nanotechnology.

[8]  J. Xie,et al.  Bio-NCs--the marriage of ultrasmall metal nanoclusters with biomolecules. , 2014, Nanoscale.

[9]  J. M. Sevilla,et al.  Influence of the Global Charge of the Protein on the Stability of Lysozyme–AuNP Bioconjugates , 2014 .

[10]  Andrew Emili,et al.  Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. , 2014, ACS nano.

[11]  Albert Duschl,et al.  Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle , 2013, Journal of Nanobiotechnology.

[12]  Ying Liu,et al.  Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. , 2013, Small.

[13]  Don McNaughton,et al.  SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components. , 2013, Physical chemistry chemical physics : PCCP.

[14]  S. Garabagiu Gold nanorods–hemoglobin bio-conjugate: Spectroscopy studies , 2013 .

[15]  Kimberly Hamad-Schifferli,et al.  How can we exploit the protein corona? , 2013, Nanomedicine.

[16]  V. Puntes,et al.  Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact. , 2012, Nanomedicine.

[17]  Marco P Monopoli,et al.  Biomolecular coronas provide the biological identity of nanosized materials. , 2012, Nature nanotechnology.

[18]  J. M. Sevilla,et al.  Role of the Functionalization of the Gold Nanoparticle Surface on the Formation of Bioconjugates with Human Serum Albumin , 2012 .

[19]  J. Weng,et al.  Probing the interaction of bovine haemoglobin with gold nanoparticles. , 2012, IET nanobiotechnology.

[20]  S. Garabagiu A spectroscopic study on the interaction between gold nanoparticles and hemoglobin , 2011 .

[21]  Prosenjit Bhattacharya,et al.  Gold nanoparticle induced conformational changes in heme protein , 2011 .

[22]  Vincent M Rotello,et al.  Nano meets biology: structure and function at the nanoparticle interface. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[23]  M. Mahmoudi,et al.  Protein-nanoparticle interactions: opportunities and challenges. , 2011, Chemical reviews.

[24]  Ping Wu,et al.  Electrochemical and spectroscopic studies on the conformational structure of hemoglobin assembled on gold nanoparticles. , 2011, The journal of physical chemistry. B.

[25]  Victor S-Y Lin,et al.  Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. , 2011, ACS nano.

[26]  Kenneth A. Dawson,et al.  Nanobiotechnology: nanoparticle coronas take shape. , 2011, Nature nanotechnology.

[27]  Albert Duschl,et al.  Time evolution of the nanoparticle protein corona. , 2010, ACS nano.

[28]  R. Sarkar,et al.  Hemoglobin-silver interaction and bioconjugate formation: a spectroscopic study. , 2010, The journal of physical chemistry. B.

[29]  Iseult Lynch,et al.  What the cell "sees" in bionanoscience. , 2010, Journal of the American Chemical Society.

[30]  M. Blázquez,et al.  Facile Exchange of Ligands on the 6-Mercaptopurine-Monolayer Protected Gold Clusters Surface† , 2010 .

[31]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[32]  M. Blázquez,et al.  Synthesis, Characterization, and Double Layer Capacitance Charging of Nanoclusters Protected by 6-Mercaptopurine , 2009 .

[33]  Kenneth A. Dawson,et al.  Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts , 2008, Proceedings of the National Academy of Sciences.

[34]  Sara Linse,et al.  The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. , 2007, Advances in colloid and interface science.

[35]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[36]  T. Pradeep,et al.  Hemoprotein bioconjugates of gold and silver nanoparticles and gold nanorods: structure-function correlations. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[37]  J. Kunze,et al.  Electrochemical evaluation of citrate adsorption on Au(111) and the stability of citrate-reduced gold colloids , 2007 .

[38]  Sara Linse,et al.  Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. , 2007, Angewandte Chemie.

[39]  M. Blázquez,et al.  Stabilization of gold nanoparticles by 6-mercaptopurine monolayers. Effects of the solvent properties. , 2006, The journal of physical chemistry. B.

[40]  David Farrar,et al.  Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. , 2006, Journal of the American Chemical Society.

[41]  J. K. Zimmerman Proteinâligand interactions: structure and spectroscopy Stephen E. Harding and Babur Z. Chowdhry (Eds.), Oxford University Press Oxford, 2001, 462 pp., ISBN 0 19 963749 0 (hardback) US$115.00, ISBN 0 19 963747 4 (paperback) US$60.00 , 2001 .

[42]  Paul Mulvaney,et al.  Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters , 2000 .

[43]  Christine D. Keating,et al.  Kinetics and Thermodynamics of Au Colloid Monolayer Self-Assembly: Undergraduate Experiments in Surface and Nanomaterials Chemistry , 1999 .

[44]  H. Mantsch,et al.  The use and misuse of FTIR spectroscopy in the determination of protein structure. , 1995, Critical reviews in biochemistry and molecular biology.

[45]  Henry H. Mantsch,et al.  Infrared Spectroscopic Characterization of Alzheimer Plaques , 1993 .

[46]  H. Mantsch,et al.  New insight into protein secondary structure from resolution-enhanced infrared spectra. , 1988, Biochimica et biophysica acta.

[47]  H. Susi,et al.  Examination of the secondary structure of proteins by deconvolved FTIR spectra , 1986, Biopolymers.

[48]  M. Brunori,et al.  The transition between 'acid' and 'alkaline' ferric heme proteins. , 1968, Biochimica et biophysica acta.