Optimal synchronous coding

Novel synchronous coding schemes are introduced and relationships between optimal synchronous codes and Huffman codes are discussed. Although the problem of existence of the optimal synchronous codes has not yet resolved, we show that any synchronous code can be considered as an optimal synchronous code for some information source alphabet. In other words, synchronous codes are almost optimal and, therefore, are regarded as near optimal with respect to average code word length. It is shown that there always exist optimal synchronous codes for the information source alphabets with a dyadic probability distribution. Comparing with the Huffman coding, the synchronous coding is used not only for statistical modeling but also for dictionary methods. It is also good at using in a large information retrieval system like the Huffman coding. Moreover, from the viewpoint of computational difficulty, it is proven that breaking a synchronous or an optimal synchronous code is NP-complete. E-mail: itjia@cityu.edu.hk This work was partially sponsored by City U Grants 7001355, 863 Program (Project No. 2002AA144060) and the National Natural Science Foundation of China (Project No. 60273062). E-mail: mli@ee.ecnu.edu.cn

[1]  Shmuel Tomi Klein,et al.  Storing text retrieval systems on CD-ROM: compression and encryption considerations , 1989, SIGIR '89.

[2]  Steven Roman Introduction to coding and information theory , 1997, Undergraduate texts in mathematics.

[3]  Julia Abrahams,et al.  Synchronization of binary source codes , 1986, IEEE Trans. Inf. Theory.

[4]  Shmuel Tomi Klein,et al.  Complexity aspects of guessing prefix codes , 2005, Algorithmica.

[5]  Shawmin Lei,et al.  An entropy coding system for digital HDTV applications , 1991, IEEE Trans. Circuits Syst. Video Technol..

[6]  Douglas W. Jones,et al.  Application of splay trees to data compression , 1988, CACM.

[7]  Stephanie Perkins,et al.  Binary Huffman Equivalent Codes with a Short Synchronizing Codeword , 1998, IEEE Trans. Inf. Theory.

[8]  Reza Hashemian Memory efficient and high-speed search Huffman coding , 1995, IEEE Trans. Commun..

[9]  Marcel Paul Schützenberger,et al.  On the Synchronizing Properties of Certain Prefix Codes , 1964, Inf. Control..

[10]  Vahid Tarokh,et al.  Existence of optimal prefix codes for infinite source alphabets , 1997, IEEE Trans. Inf. Theory.

[11]  Weijia Jia,et al.  Optimal maximal encoding different from Huffman encoding , 2001, Proceedings International Conference on Information Technology: Coding and Computing.

[12]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[13]  Gopal Lakhani,et al.  Improved Huffman code tables for JPEG's encoder , 1995, IEEE Trans. Circuits Syst. Video Technol..

[14]  Mark R. Titchener The synchronization of variable-length codes , 1997, IEEE Trans. Inf. Theory.

[15]  Ronald L. Rivest,et al.  On breaking a Huffman code , 1996, IEEE Trans. Inf. Theory.

[16]  Thomas J. Ferguson,et al.  Self-synchronizing Huffman codes , 1984, IEEE Trans. Inf. Theory.

[17]  Jeffrey Scott Vitter,et al.  Design and analysis of dynamic Huffman codes , 1987, JACM.

[18]  Kou-Hu Tzou High-order entropy coding for images , 1992, IEEE Trans. Circuits Syst. Video Technol..

[19]  Frank Rubin Cryptographic Aspects of Data Compression Codes , 1979, Cryptologia.

[20]  Marcel Paul Schützenberger,et al.  On Synchronizing Prefix Codes , 1967, Inf. Control..

[21]  Umberto Eco,et al.  Theory of Codes , 1976 .

[22]  Alfredo De Santis,et al.  On the construction of statistically synchronizable codes , 1992, IEEE Trans. Inf. Theory.

[23]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[24]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[25]  Luisa Gargano,et al.  On the characterization of statistically synchronizable variable-length codes , 1988, IEEE Trans. Inf. Theory.