The correlation-consistent composite approach: application to the G3/99 test set.

The correlation-consistent composite approach (ccCA), an ab initio composite technique for computing atomic and molecular energies, recently has been shown to successfully reproduce experimental data for a number of systems. The ccCA is applied to the G3/99 test set, which includes 223 enthalpies of formation, 88 adiabatic ionization potentials, 58 adiabatic electron affinities, and 8 adiabatic proton affinities. Improvements on the original ccCA formalism include replacing the small basis set quadratic configuration interaction computation with a coupled cluster computation, employing a correction for scalar relativistic effects, utilizing the tight-d forms of the second-row correlation-consistent basis sets, and revisiting the basis set chosen for geometry optimization. With two types of complete basis set extrapolation of MP2 energies, ccCA results in an almost zero mean deviation for the G3/99 set (with a best value of -0.10 kcal mol(-1)), and a 0.96 kcal mol(-1) mean absolute deviation, which is equivalent to the accuracy of the G3X model chemistry. There are no optimized or empirical parameters included in the computation of ccCA energies. Except for a few systems to be discussed, ccCA performs as well as or better than Gn methods for most systems containing first-row atoms, while for systems containing second-row atoms, ccCA is an improvement over Gn model chemistries.

[1]  M. Månsson,et al.  Enthalpies of combustion and formation of acetonitrile , 1983 .

[2]  W. D. Allen,et al.  Complete basis set limit studies of conventional and R12 correlation methods: The silicon dicarbide (SiC2) barrier to linearity , 2003 .

[3]  L. Curtiss,et al.  Gaussian-3 and related methods for accurate thermochemistry , 2002 .

[4]  Henry F. Schaefer,et al.  In pursuit of the ab initio limit for conformational energy prototypes , 1998 .

[5]  B. Ruscic,et al.  On the heat of formation of carbonyl fluoride, CF2O , 1996 .

[6]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[7]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[8]  S. Ten-no,et al.  Quadratic configuration interaction versus coupled-cluster theory: Importance of orbital relaxation phenomena in CuH and CuF , 1997 .

[9]  Timothy J. Lee,et al.  The atomization energy and proton affinity of NH3. An ab initio calibration study , 1996 .

[10]  A. D. McLean,et al.  SCF‐LCAO‐MO Wave Function for the 1Σg+ Ground State of C3 , 1962 .

[11]  Krishnan Raghavachari,et al.  Gaussian‐1 theory of molecular energies for second‐row compounds , 1990 .

[12]  D. Dixon,et al.  Heats of formation and ionization energies of NHx, x=0–3 , 2001 .

[13]  J. Stanton,et al.  Ab initio determination of the heat of formation of ketenyl (HCCO) and ethynyl (CCH) radicals , 2005 .

[14]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[15]  Krishnan Raghavachari,et al.  GAUSSIAN-3 THEORY USING DENSITY FUNCTIONAL GEOMETRIES AND ZERO-POINT ENERGIES , 1999 .

[16]  D. Dixon,et al.  Coupled Cluster Theory Determination of the Heats of Formation of Combustion-Related Compounds: CO, HCO, CO2, HCO2, HOCO, HC(O)OH, and HC(O)OOH , 2003 .

[17]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[18]  David J. Frurip,et al.  Theoretical Methods for Computing Enthalpies of Formation of Gaseous Compounds , 2007 .

[19]  Angela K. Wilson,et al.  Accurate enthalpies of formation of alkali and alkaline earth metal oxides and hydroxides: assessment of the correlation consistent composite approach (ccCA). , 2006, The journal of physical chemistry. A.

[20]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[21]  Krishnan Raghavachari,et al.  Gaussian-3 theory using coupled cluster energies , 1999 .

[22]  C. W. Bauschlicher,et al.  A modification of the Gaussian‐2 approach using density functional theory , 1995 .

[23]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[24]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[25]  L. Radom,et al.  Heats of formation of alkali and alkaline earth oxides and hydroxides: some dramatic failures of the G2 method , 1999 .

[26]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[27]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[28]  D. Golden,et al.  The thermochemistry of the isomerization of 3-halopropenes (allyl halides) to 1-halopropenes; entropy and enthalpy of formation contribution of the Cd-(H)(X) group , 1973 .

[29]  Kirk A. Peterson,et al.  Approximating the basis set dependence of coupled cluster calculations: Evaluation of perturbation theory approximations for stable molecules , 2000 .

[30]  G. Pilcher,et al.  Measurements of heats of combustion by flame calorimetry. Part 8.—Methane, ethane, propane, n-butane and 2-methylpropane , 1972 .

[31]  F. Davidson,et al.  Heats of Formation of Gaseous Fluoro- and Fluorochloro-Carbons , 1954, Nature.

[32]  L. Curtiss,et al.  Assessment of Gaussian-3 and density functional theories for a larger experimental test set , 2000 .

[33]  Jan M.L. Martin,et al.  Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities , 2001 .

[34]  Jean-Philippe Blaudeau,et al.  Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca , 1995 .

[35]  R. Bartlett,et al.  Accurate electrical and spectroscopic properties ofX1Σ+ BeO from coupled-cluster methods , 1995 .

[36]  Angela K. Wilson,et al.  Effects of Basis Set Choice upon the Atomization Energy of the Second-Row Compounds SO2, CCl, and ClO2 for B3LYP and B3PW91 , 2003 .

[37]  T. Dunning,et al.  Theoretical estimate of the enthalpy of formation of sulfhydryl radical (HSO) and HSO-SOH isomerization energy , 1993 .

[38]  J. Pople,et al.  Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements , 2002 .

[39]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[40]  W. Roth,et al.  Resonanzenergie überbrückter [10]Annulene , 1983 .

[41]  T. Dunning,et al.  The HSO−SOH Isomers Revisited: The Effect of Tight d Functions† , 2004 .

[42]  Krishnan Raghavachari,et al.  Accurate thermochemistry for larger molecules : gaussian-2 theory with bond separation energies. , 1997 .

[43]  J. Cioslowski,et al.  A set of standard enthalpies of formation for benchmarking, calibration, and parametrization of electronic structure methods , 2000 .

[44]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[45]  E. Kováts,et al.  Thermische Eigenschaften von Azulenen , 1955 .

[46]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[47]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[48]  Nathan J DeYonker,et al.  The correlation consistent composite approach (ccCA): an alternative to the Gaussian-n methods. , 2006, The Journal of chemical physics.

[49]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[50]  Krishnan Raghavachari,et al.  Gaussian-3 theory using reduced Mo/ller-Plesset order , 1999 .

[51]  Jan M. L. Martin,et al.  TOWARDS STANDARD METHODS FOR BENCHMARK QUALITY AB INITIO THERMOCHEMISTRY :W1 AND W2 THEORY , 1999, physics/9904038.

[52]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[53]  W. D. Allen,et al.  Definitive ab initio studies of model SN2 reactions CH(3)X+F- (X=F, Cl, CN, OH, SH, NH(2), PH(2)). , 2003, Chemistry.

[54]  A. Wilson,et al.  SO3 revisited: Impact of tight d augmented correlation consistent basis sets on atomization energy and structure , 2004 .

[55]  Leo Radom,et al.  Gaussian‐2 (G2) theory: Reduced basis set requirements , 1996 .

[56]  V. P. Kolesov,et al.  Thermochemistry of Haloethanes , 1983 .

[57]  Peter J. Knowles,et al.  On the convergence of the Møller-Plesset perturbation series , 1985 .

[58]  Jan M. L. Martin Ab initio total atomization energies of small molecules — towards the basis set limit , 1996 .

[59]  C. Neugebauer,et al.  The Heats of Formation of Tetrafiuoroethylene, Tetrafluoromethane and, l, l-Difluoroethylene. , 1956 .

[60]  Per Jensen,et al.  Computational molecular spectroscopy , 2000, Nature Reviews Methods Primers.

[61]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[62]  Angela K. Wilson,et al.  Benchmark calculations with correlated molecular wave functions. X. Comparison with , 1997 .

[63]  G. A. Petersson,et al.  A Journey from Generalized Valence Bond Theory to the Full CI Complete Basis Set Limit , 2000 .

[64]  James S. Chickos,et al.  Enthalpies of Sublimation of Organic and Organometallic Compounds. 1910–2001 , 2002 .

[65]  L. Curtiss,et al.  Gaussian-3X (G3X) theory : use of improved geometries, zero-point energies, and Hartree-Fock basis sets. , 2001 .

[66]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[67]  Matthew L. Leininger,et al.  The standard enthalpy of formation of CH2 , 2003 .

[68]  Kirk A. Peterson,et al.  Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited , 2002 .

[69]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[70]  G. Ellison,et al.  Three methods to measure RH bond energies , 1994 .

[71]  Krishnan Raghavachari,et al.  Gaussian-2 theory using reduced Moller--Plesset orders , 1993 .

[72]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[73]  Wesley D. Allen,et al.  The heat of formation of NCO , 1993 .

[74]  J. C. Amphlett,et al.  The reaction 2COF2 .far. CO2 + CF4 and the heat of formation of carbonyl fluoride , 1971 .

[75]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[76]  C. Schwartz,et al.  Importance of Angular Correlations between Atomic Electrons , 1962 .

[77]  D. Dixon,et al.  Predicting the heats of formation of model hydrocarbons up to benzene , 2000 .

[78]  L. Curtiss,et al.  THE RELATIVISTIC DIRAC-COULOMB-FOCK EFFECT ON ATOMIZATION ENERGIES , 1999 .

[79]  L. Curtiss,et al.  Heats of formation of alkali metal and alkaline earth metal oxides and hydroxides: Surprisingly demanding targets for high-level ab initio procedures , 2003 .

[80]  H. Wartenberg Die Bildungswärme einiger Fluoride , 1949 .

[81]  Robert J. Harrison,et al.  Parallel Douglas-Kroll Energy and Gradients in NWChem. Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets. , 2001 .

[82]  Branko Ruscic,et al.  Simultaneous Adjustment of Experimentally Based Enthalpies of Formation of CF3X , 1998 .

[83]  D. Dixon,et al.  Theoretical study of the heats of formation of small silicon-containing compounds , 1999 .

[84]  L. Curtiss,et al.  EVALUATION OF BOND ENERGIES TO CHEMICAL ACCURACY BY QUANTUM CHEMICAL TECHNIQUES , 1995 .

[85]  John A. Montgomery,et al.  Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry , 1998 .

[86]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[87]  David Feller,et al.  The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water , 1993 .

[88]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[89]  J. Bearden,et al.  Atomic energy levels , 1965 .

[90]  W. A. Jong,et al.  Performance of coupled cluster theory in thermochemical calculations of small halogenated compounds , 2003 .

[91]  J. B. Pedley,et al.  Thermochemical data of organic compounds , 1986 .

[92]  Krishnan Raghavachari,et al.  Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities , 1998 .

[93]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[94]  Melita L. Morton,et al.  IUPAC Critical Evaluation of Thermochemical Properties of Selected Radicals. Part I , 2005 .

[95]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[96]  B. Bohmfalk,et al.  Reaction Heats of Organic Halogen Compounds. IV. A High Temperature Calorimeter and the Hydrogenation of Methyl, Ethyl, and Vinyl Chlorides , 1956 .

[97]  J. Montgomery,et al.  Ab initio calculation of the heats of formation of CF3OH and CF2O , 1994 .

[98]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[99]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[100]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[101]  L. Curtiss,et al.  Scalar relativistic effects on energies of molecules containing atoms from hydrogen through argon , 2001 .

[102]  Matthew L. Leininger,et al.  Is Mo/ller–Plesset perturbation theory a convergent ab initio method? , 2000 .

[103]  J. M. Simoes,et al.  Transition metal-hydrogen and metal-carbon bond strengths: the keys to catalysis , 1990 .

[104]  W. Kutzelnigg,et al.  Relativistic Hartree–Fock by means of stationary direct perturbation theory. I. General theory , 1995 .

[105]  J. Schiefer,et al.  Bildungswärmen von Fluor‐Chlor‐Kohlenstoff‐Verbindungen , 1955 .

[106]  Juana Vázquez,et al.  HEAT: High accuracy extrapolated ab initio thermochemistry. , 2004, The Journal of chemical physics.

[107]  Theresa L Windus,et al.  Thermodynamic properties of the C5, C6, and C8 n-alkanes from ab initio electronic structure theory. , 2005, The journal of physical chemistry. A.

[108]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[109]  L. Curtiss,et al.  Gaussian-3 theory using scaled energies , 2000 .

[110]  D. Dixon,et al.  Molecular Structure, Vibrational Frequencies, and Energetics of the HCO, HOCO, and HCO2 Anions , 2003 .

[111]  T. Crawford,et al.  Sources of error in electronic structure calculations on small chemical systems. , 2006, The Journal of chemical physics.

[112]  Angela K. Wilson,et al.  Harmonic Vibrational Frequencies: Scaling Factors for HF, B3LYP, and MP2 Methods in Combination with Correlation Consistent Basis Sets , 2004 .

[113]  Michael J. Frisch,et al.  Theoretical thermochemistry. 1. Heats of formation of neutral AHn molecules (A = Li to Cl) , 1985 .

[114]  D. Dixon,et al.  Heats of Formation of Simple Perfluorinated Carbon Compounds , 1999 .

[115]  Rodney J. Bartlett,et al.  COUPLED-CLUSTER THEORY: AN OVERVIEW OF RECENT DEVELOPMENTS , 1995 .

[116]  K. Morokuma,et al.  Ab initio molecular orbital study of potential energy surface for the NH+NO2 reaction , 1994 .