Fair sampling of ground-state configurations of binary optimization problems.

Although many efficient heuristics have been developed to solve binary optimization problems, these typically produce correlated solutions for degenerate problems. Most notably, transverse-field quantum annealing-the heuristic employed in current commercially available quantum annealing machines-has been shown to often be exponentially biased when sampling the solution space. Here we present an approach to sample ground-state (or low-energy) configurations for binary optimization problems. The method samples degenerate states with almost equal probability and is based on a combination of parallel tempering Monte Carlo with isoenergetic cluster moves. We illustrate the approach using two-dimensional Ising spin glasses, as well as spin glasses on the D-Wave Systems quantum annealer chimera topology. In addition, a simple heuristic to approximate the number of solutions of a degenerate problem is introduced.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  H. Nishimori,et al.  Mathematical foundation of quantum annealing , 2008, 0806.1859.

[3]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[4]  J. Smolin,et al.  Putting "Quantumness" to the Test , 2013 .

[5]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[6]  H. Katzgraber,et al.  Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians. , 2016, Physical review letters.

[7]  J. Houdayer,et al.  A cluster Monte Carlo algorithm for 2-dimensional spin glasses , 2001 .

[8]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[9]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[10]  A. Code Physics I.6 , 2018 .

[11]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[12]  B. Chakrabarti,et al.  Quantum Annealing and Related Optimization Methods , 2008 .

[13]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[14]  Toby Walsh,et al.  Handbook of satisfiability , 2009 .

[15]  Bikas K. Chakrabarti,et al.  Quantum Annealing and Other Optimization Methods , 2005 .

[16]  W. Marsden I and J , 2012 .

[17]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[18]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[19]  Cesare Tinelli,et al.  Handbook of Satisfiability , 2021, Handbook of Satisfiability.

[20]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[21]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Alejandro Perdomo-Ortiz,et al.  Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches , 2016, 1604.01746.

[24]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[25]  Daniel A. Lidar,et al.  Max 2-SAT with up to 108 qubits , 2013, 1307.3931.

[26]  Wenlong Wang,et al.  Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[28]  E. Tosatti,et al.  Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .

[29]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[30]  Andrew D. King,et al.  Degeneracy, degree, and heavy tails in quantum annealing , 2015, 1512.07325.

[31]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[32]  Christopher K. I. Williams,et al.  The Shape Boltzmann Machine: A Strong Model of Object Shape , 2012, International Journal of Computer Vision.

[33]  Daniel Herr,et al.  Assessment of Quantum Annealing for the Construction of Satisfiability Filters , 2016, 1607.03329.

[34]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[35]  Firas Hamze,et al.  Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.

[36]  H. Katzgraber,et al.  Ground-state statistics from annealing algorithms: quantum versus classical approaches , 2009 .

[37]  Helmut G. Katzgraber,et al.  A deceptive step towards quantum speedup detection , 2017, Quantum Science and Technology.

[38]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[39]  Daniel A. Lidar,et al.  Quantum annealing correction with minor embedding , 2015, 1507.02658.

[40]  J. Vondrák,et al.  New algorithm for the Ising problem: partition function for finite lattice graphs. , 2000, Physical review letters.

[41]  Itay Hen,et al.  Unraveling Quantum Annealers using Classical Hardness , 2015, Scientific reports.

[42]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[43]  Finding Low-Temperature States With Parallel Tempering, Simulated Annealing And Simple Monte Carlo , 2002, cond-mat/0209248.

[44]  Helmut G. Katzgraber,et al.  The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again) , 2017, 1703.00622.

[45]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[46]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[47]  Daniel A. Lidar,et al.  Consistency tests of classical and quantum models for a quantum annealer , 2014, 1403.4228.

[48]  Andrew J. Ochoa,et al.  Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension. , 2015, Physical review letters.

[49]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[50]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[51]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[52]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[53]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[54]  Andrew J. Ochoa,et al.  Best-case performance of quantum annealers on native spin-glass benchmarks: How chaos can affect success probabilities , 2015, 1505.02278.