Other Deductive Systems

The Chapter provides a set of preliminary notes to the next one, where several forms of extended ND systems are discussed. These nonstandard forms of ND are strongly based on solutions occuring in different kinds of deductive systems. Therefore we need to recall some basic information concerning them, which is taken up successively in two sections: the first presents sequent and tableau calculi, systems strongly connected with ND; the second deals with systems popular in automated theorem proving like resolution and Davis/Putnam procedure. It happens that the latter systems are based on the application of cut, whereas the former rather tend to eliminate this rule in practice.

[1]  Ullrich Hustadt,et al.  Resolution-Based Methods for Modal Logics , 2000, Log. J. IGPL.

[2]  R. Smullyan First-Order Logic , 1968 .

[3]  Zbigniew Lis Wynikanie semantyczne a wynikanie formalne , 1960 .

[4]  Evert W. Beth,et al.  Semantic Entailment And Formal Derivability , 1955 .

[5]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[6]  Dag Prawitz,et al.  A Mechanical Proof Procedure and its Realization in an Electronic Computer , 1960, JACM.

[7]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[8]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[9]  Hao Wang,et al.  Toward Mechanical Mathematics , 1960, IBM J. Res. Dev..

[10]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[11]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[12]  George Boolos,et al.  Don't eliminate cut , 1984, J. Philos. Log..

[13]  Marcello D'Agostino,et al.  Tableau Methods for Classical Propositional Logic , 1999 .

[14]  David A. Plaisted,et al.  The efficiency of theorem proving strategies - a comparative and asymptotic analysis , 1999, Computational intelligence.

[15]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[16]  Ullrich Hustadt,et al.  Issues of Decidability for Description Logics in the Framework of Resolution , 1998, FTP.

[17]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[18]  P. O'Hearn,et al.  Resolution in the domain of strongly finite logics , 1990 .

[19]  Reiner Hähnle,et al.  Tableaux and Related Methods , 2001, Handbook of Automated Reasoning.

[20]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[21]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[22]  G. Priest An introduction to non-classical logic , 2001 .

[23]  Alan Robinson,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[24]  Arnon Avron Gentzen-type systems, resolution and tableaux , 2004, Journal of Automated Reasoning.

[25]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[26]  Melvin Fitting,et al.  Destructive Modal Resolution , 1990, J. Log. Comput..

[27]  G. Mints,et al.  Cut-Free Calculi of the S5 Type , 1970 .

[28]  Gillier,et al.  Logic for Computer Science , 1986 .

[29]  David A. Plaisted,et al.  The Efficiency of Theorem Proving Strategies , 1997 .

[30]  Gernot Salzer,et al.  Automated Deduction in Classical and Non-Classical Logics , 2002, Lecture Notes in Computer Science.

[31]  Ullrich Hustadt,et al.  Using Resolution for Testing Modal Satisfiability and Building Models , 2002, Journal of Automated Reasoning.

[32]  Luis Fariñas del Cerro,et al.  Modal deduction with applications in epistemic and temporal logics , 1995 .

[33]  Renate A. Schmidt,et al.  Developing Modal Tableaux and Resolution Methods via First-Order Resolution , 2006, Advances in Modal Logic.

[34]  Maarten de Rijke,et al.  Resolution in Modal, Description and Hybrid Logic , 2001, J. Log. Comput..

[35]  H. Wansing Displaying Modal Logic , 1998 .