Ultrashort-pulse second-harmonic generation. II. Non-transform-limited fundamental pulses

A general theory of second-harmonic generation, including all the effects of group-velocity dispersion, is given for coherent ultrashort pulses with arbitrary shapes and carrier chirps. Ultrashort-pulse second-harmonic generation is analyzed for transform-limited fundamental pulses. The effects of intrapulse group-velocity dispersion (IGVD) on the second-harmonic (SH) pulse shape are investigated for parameters representative of popular phase-matchable crystals and wavelength, including Ti:sapphire lasers. In phase-matched structures IGVD at the SH cannot be neglected for pulses approaching 10 fs. It results in a spectral quadratic phase on the SH and in some cases can shorten the pulse. External dispersive shaping of the SH pulses distorted by group-velocity mismatch (GVM) is examined, and some pulse shortening is found possible. It is shown that the effect of IGVD at the SH wavelength on the pulse is similar to that of the spectral quadratic phase provided by an external pulse shaper. Group-velocity-matched configurations are also investigated. IGVD at both the fundamental and the SH wavelengths is found to limit the optimum thickness of the nonlinear medium. A measure of the interaction length in which the pulse width of the fundamental pulse is preserved in the SH is introduced. It is defined in terms of the GVM and the pulse bandwidth for phase-matched structures and in terms of the IGVD and pulse bandwidths for group-velocity-matched configurations.

[1]  J. Manassah,et al.  Induced phase modulation of a generated second-harmonic signal. , 1987, Optics letters.

[2]  J P Heritage,et al.  Direct measurement of the spectral phase of femtosecond pulses. , 1995, Optics letters.

[3]  M M Murnane,et al.  Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser. , 1993, Optics letters.

[4]  H. G. Muller,et al.  Numerical calculation of optical frequency-conversion processes: a new approach , 1989 .

[5]  O. Martínez,et al.  Direct determination of the amplitude and the phase of femtosecond light pulses. , 1991, Optics letters.

[6]  G. Khanarian,et al.  Quasi-phase-matched frequency doubling in bulk periodic polymeric structures. , 1994, Optics letters.

[7]  W H Knox,et al.  Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate. , 1984, Optics letters.

[8]  Zhaoyang Sun,et al.  The nonlinear optical characteristics of a LiB3O5 crystal , 1990 .

[9]  I. Christov,et al.  Fourth-order dispersion-limited solitary pulses. , 1994, Optics letters.

[10]  R Szipocs,et al.  Generation of 11-fs pulses from a Ti:sapphire laser without the use of prisms. , 1994, Optics letters.

[11]  C. Tang,et al.  High-power, high-repetition-rate femtosecond pulses tunable in the visible. , 1993, Optics letters.

[12]  Gábor Szabó,et al.  Broadband frequency doubler for femtosecond pulses , 1990 .

[13]  A. Knoesen,et al.  Ultrashort-pulse second-harmonic generation in quasi-phase-matched dispersive media. , 1994, Optics letters.

[14]  W. Glenn,et al.  Second-harmonic generation by picosecond optical pulses , 1969 .

[15]  F. Zernike,et al.  Refractive Indices of Ammonium Dihydrogen Phosphate and Potassium Dihydrogen Phosphate between 2000 A and 1.5 mu: Errata , 1965 .

[16]  E. Wachman,et al.  Evaluation of LiB3O5 for second‐harmonic generation of femtosecond optical pulses , 1990 .

[17]  Andrew M. Weiner,et al.  High-resolution femtosecond pulse shaping , 1988 .

[18]  M. Murnane,et al.  Intracavity frequency doubling in a Ti:sapphire laser: generation of 14-fs pulses at 416 nm. , 1994, Optics letters.

[19]  Masanori Koshiba,et al.  Group‐velocity‐matched second‐harmonic generation: An efficient scheme for femtosecond ultraviolet pulse generation in periodically domain‐inverted β‐BaB2O4 , 1993 .

[20]  William K. Bischel,et al.  Numerical studies of the interplay between self‐phase modulation and dispersion for intense plane‐wave laser pulses , 1975 .

[21]  N. Kothari,et al.  Transient second-harmonic generation: influence of effective group-velocity dispersion , 1988 .

[22]  M. Downer,et al.  Phase and group velocity matching for second harmonic generation of femtosecond pulses. , 1990, Applied optics.

[23]  F. Krausz,et al.  Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion. , 1993, Optics letters.

[24]  Oscar E. Martínez,et al.  Achromatic phase matching for second harmonic generation of femtosecond pulses , 1989 .

[25]  Anatoly P. Sukhorukov,et al.  Nonstationary nonlinear optical effects and ultra-short light pulse formation , 1968 .

[26]  Andrew M. Weiner,et al.  Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation , 1983 .

[27]  F. Krausz,et al.  Coherent effects in a self-mode-locked Ti:sapphire laser. , 1994, Optics letters.

[28]  E. Garmire,et al.  Second Harmonic Generation from Short Pulses , 1968 .

[29]  I. Christov,et al.  Pulse evolution in a broad-bandwidth Ti:sapphire laser. , 1994, Optics letters.

[30]  David Eimerl,et al.  Optical, mechanical, and thermal properties of barium borate , 1987 .

[31]  Peter J. Delfyett,et al.  High-power ultrafast laser diodes , 1992 .

[32]  A. Knoesen,et al.  Generation of 312 nm, femtosecond pulses using a poled copolymer film , 1991 .

[33]  D. Kane,et al.  Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating , 1993 .

[34]  N. Chen,et al.  Highly efficient ultraviolet generation at 355 nm in LiB(3)O(5). , 1989, Optics letters.

[35]  Robert C. Eckardt,et al.  Phase matching limitations of high efficiency second harmonic generation , 1984 .

[36]  G. Khanarian,et al.  Phase‐matched second‐harmonic generation from free‐standing periodically stacked polymer films , 1993 .

[37]  J. Manassah Effects of velocity dispersion on a generated second harmonic signal. , 1988, Applied optics.