A network of heterogeneous hydrogen bonds in GNRA tetraloops.

RNA hairpin loops containing a GNRA consensus sequence are the most frequently occurring hairpins in a variety of prokaryotic and eukaryotic RNAs. These tetraloops play important functional roles in RNA folding, in RNA-RNA tertiary interactions and as protein binding sites. Homo and heteronuclear NMR spectroscopy have been used to determine the structures of the most abundant members of the GNRA tetraloop family: the GAGA, GCAA and GAAA loops closed by a C-G base pair. Analysis of the structures of these three hairpin loops reveals a network of heterogeneous hydrogen bonds. The loops contain a G-A base pair, a G base-phosphate hydrogen bond and several 2' OH-base hydrogen bonds. These intramolecular interactions and the extensive base stacking in the loop help explain the high thermodynamic stability and give insight into the diverse biological roles of the GNRA RNA hairpins.

[1]  H. Fukuhara,et al.  Différence entre les mécanismes de la biosynthèse induite des iso-cytochromes c: I. Dépendance vis-à-vis des acides aminés libres , 1966 .

[2]  A. Rich,et al.  Structural domains of transfer RNA molecules. , 1976, Science.

[3]  Richard R. Ernst,et al.  Coherence transfer in the rotating frame , 1979 .

[4]  K Wüthrich,et al.  A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. , 1980, Biochemical and biophysical research communications.

[5]  F. D. Leeuw,et al.  The relationship between proton-proton NMR coupling constants and substituent electronegativities—I : An empirical generalization of the karplus equation , 1980 .

[6]  D. States,et al.  A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants☆ , 1982 .

[7]  Pierre Plateau,et al.  Exchangeable proton NMR without base-line distorsion, using new strong-pulse sequences , 1982 .

[8]  J. Sussman,et al.  Adenine-guanine base pairing ribosomal RNA. , 1982, Nucleic acids research.

[9]  G. Drobny,et al.  Assignment of the non-exchangeable proton resonances of d(C-G-C-G-A-A-T-T-C-G-C-G) using two-dimensional nuclear magnetic resonance methods. , 1983, Journal of molecular biology.

[10]  P. J Hors,et al.  A new method for water suppression in the proton NMR spectra of aqueous solutions , 1983 .

[11]  J. Feigon,et al.  Two-dimensional proton nuclear magnetic resonance investigation of the synthetic deoxyribonucleic acid decamer d(ATATCGATAT)2. , 1983, Biochemistry.

[12]  R. Kaptein,et al.  SEQUENTIAL RESONANCE ASSIGNMENTS IN DNA H-1-NMR SPECTRA BY TWO-DIMENSIONAL NOE SPECTROSCOPY , 1983 .

[13]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[14]  K. Wüthrich,et al.  Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. , 1983, Biochemical and biophysical research communications.

[15]  C. Erkelens,et al.  Carbon-13 NMR in conformational analysis of nucleic acid fragments. 2. A reparametrization of the Karplus equation for vicinal NMR coupling constants in CCOP and HCOP fragments. , 1984, Journal of biomolecular structure & dynamics.

[16]  R. Gutell,et al.  Comparative anatomy of 16-S-like ribosomal RNA. , 1985, Progress in nucleic acid research and molecular biology.

[17]  西村 善文 W. Saenger: Principles of Nucleic Acid Structure, Springer-Verlag, New York and Berlin, 1984, xx+556ページ, 24.5×16.5cm, 14,160円 (Springer Advanced Texts in Chemistry). , 1985 .

[18]  A. Bax,et al.  Assignment of the 31P and 1H resonances in oligonucleotides by two‐dimensional NMR spectroscopy , 1986, FEBS letters.

[19]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[20]  O. Uhlenbeck,et al.  Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. , 1987, Nucleic acids research.

[21]  Tom Alber,et al.  Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme , 1988, Nature.

[22]  I. Wool,et al.  The cytotoxins alpha-sarcin and ricin retain their specificity when tested on a synthetic oligoribonucleotide (35-mer) that mimics a region of 28 S ribosomal ribonucleic acid. , 1988, The Journal of biological chemistry.

[23]  C. W. Hilbers,et al.  Nucleic acids and nuclear magnetic resonance. , 1988, European journal of biochemistry.

[24]  G. Stormo,et al.  CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Ad Bax,et al.  Three-dimensional heteronuclear NMR of nitrogen-15 labeled proteins , 1989 .

[26]  E Westhof,et al.  Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. , 1989, Journal of molecular biology.

[27]  Ad Bax,et al.  Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins , 1989 .

[28]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[29]  O. Uhlenbeck Tetraloops and RNA folding , 1990, Nature.

[30]  C R Woese,et al.  Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Westhof,et al.  Structural studies on site-directed mutants of domain 3 of Xenopus laevis oocyte 5 S ribosomal RNA. , 1991, Journal of molecular biology.

[32]  Novel proton NMR assignment procedure for RNA duplexes , 1991 .

[33]  I. Tinoco,et al.  Crystal structure of an RNA double helix incorporating a track of non-Watson–Crick base pairs , 1991, Nature.

[34]  I. Tinoco,et al.  A thermodynamic study of unusually stable RNA and DNA hairpins. , 1991, Nucleic acids research.

[35]  H. Heus,et al.  Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. , 1991, Science.

[36]  I. Tinoco,et al.  Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. , 1992, Nucleic acids research.

[37]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[38]  A. Pardi,et al.  Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. , 1992, Nucleic acids research.

[39]  D. Turner,et al.  Context dependence of hydrogen bond free energy revealed by substitutions in an RNA hairpin. , 1992, Science.

[40]  A. Pardi,et al.  Simple procedure for resonance assignment of the sugar protons in 13C-labeled RNAs , 1992 .

[41]  B. Reid,et al.  Determination of nucleic acid backbone conformation by proton nmr , 1992 .

[42]  I. Wool,et al.  Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. , 1992, Journal of molecular biology.

[43]  T. Cech,et al.  An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. , 1993, Biochemistry.

[44]  A. Pardi,et al.  An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. , 1993, Journal of molecular biology.

[45]  K. Taira,et al.  High-resolution NMR study of a synthetic oligoribonucleotide with a tetranucleotide GAGA loop that is a substrate for the cytotoxic protein, ricin. , 1993, Nucleic acids research.

[46]  E Westhof,et al.  Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. , 1994, Journal of molecular biology.

[47]  L. Mueller,et al.  Through-bond correlation of adenine protons in a 13C-labeled ribozyme , 1994 .

[48]  D Gautheret,et al.  A major family of motifs involving G.A mismatches in ribosomal RNA. , 1994, Journal of molecular biology.

[49]  T. Cech,et al.  GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. , 1994, Journal of molecular biology.

[50]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[51]  K. Flaherty,et al.  Three-dimensional structure of a hammerhead ribozyme , 1994, Nature.

[52]  31P chemical shift as a probe of structural motifs in RNA. , 1994, Journal of magnetic resonance. Series B.

[53]  A. Pardi,et al.  GNRA tetraloops make a U-turn. , 1995, RNA.

[54]  L. Mueller,et al.  Improved RNA Structure Determination by Detection of NOE Contacts to Exchange-Broadened Amino Protons , 1995 .

[55]  P. Moore,et al.  The sarcin/ricin loop, a modular RNA. , 1995, Journal of molecular biology.

[56]  F. Michel,et al.  Frequent use of the same tertiary motif by self‐folding RNAs. , 1995, The EMBO journal.

[57]  D. Zichi Molecular Dynamics of RNA with the OPLS Force Field. Aqueous Simulation of a Hairpin Containing a Tetranucleotide Loop , 1995 .

[58]  T. Cech,et al.  An important RNA tertiary interaction of group I and group II introns is implicated in gram-positive RNase P RNAs. , 1995, RNA.

[59]  James W. Brown,et al.  Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. , 1996, Proceedings of the National Academy of Sciences of the United States of America.