The upper envelope of piecewise linear functions: Algorithms and applications
暂无分享,去创建一个
Leonidas J. Guibas | Micha Sharir | Herbert Edelsbrunner | M. Sharir | H. Edelsbrunner | L. Guibas | L. Guibas
[1] Leonidas J. Guibas,et al. On the general motion-planning problem with two degrees of freedom , 2015, SCG '88.
[2] Micha Sharir,et al. Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..
[3] Leonidas J. Guibas,et al. Computing convolutions by reciprocal search , 1986, SCG '86.
[4] Micha Sharir,et al. The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates: Combinatorial analysis , 2011, Discret. Comput. Geom..
[5] D. Defays,et al. An Efficient Algorithm for a Complete Link Method , 1977, Comput. J..
[6] Micha Sharir,et al. Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..
[7] Arnold L. Rosenberg,et al. Stabbing line segments , 1982, BIT.
[8] Micha Sharir,et al. Separating two simple polygons by a sequence of translations , 2015, Discret. Comput. Geom..
[9] Leonidas J. Guibas,et al. A kinetic framework for computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[10] Tomás Lozano-Pérez,et al. An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.
[11] Arie Tamir,et al. Improved Complexity Bounds for Center Location Problems on Networks by Using Dynamic Data Structures , 1988, SIAM J. Discret. Math..
[12] Micha Sharir,et al. Triangles in space or building (and analyzing) castles in the air , 1990, Comb..
[13] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[14] David Avis,et al. Algorithms for high dimensional stabbing problems , 1990, Discret. Appl. Math..
[15] Micha Sharir,et al. On the Two-Dimensional Davenport Schinzel Problem , 2018, J. Symb. Comput..
[16] Godfried T. Toussaint,et al. Movable Separability of Sets , 1985 .
[17] Herbert Edelsbrunner,et al. The upper envelope of piecewise linear functions: Tight bounds on the number of faces , 1989, Discret. Comput. Geom..
[18] Micha Sharir,et al. Planning, geometry, and complexity of robot motion , 1986 .
[19] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[20] Micha Sharir,et al. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..
[21] Michael McKenna. Worst-case optimal hidden-surface removal , 1987, TOGS.
[22] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[23] Ferenc Dévai,et al. Quadratic bounds for hidden line elimination , 1986, SCG '86.
[24] Micha Sharir,et al. Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.
[25] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[26] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[27] Bernard Chazelle,et al. Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..