The upper envelope of piecewise linear functions: Algorithms and applications

This paper studies applications of envelopes of piecewise linear functions to problems in computational geometry. Among these applications we find problems involving hidden line/surface elimination, motion planning, transversals of polytopes, and a new type of Voronoi diagram for clusters of points. All results are either combinatorial or computational in nature. They are based on the combinatorial analysis in two companion papers [PS] and [E2] and a divide-and-conquer algorithm for computing envelopes described in this paper.

[1]  Leonidas J. Guibas,et al.  On the general motion-planning problem with two degrees of freedom , 2015, SCG '88.

[2]  Micha Sharir,et al.  Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..

[3]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[4]  Micha Sharir,et al.  The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates: Combinatorial analysis , 2011, Discret. Comput. Geom..

[5]  D. Defays,et al.  An Efficient Algorithm for a Complete Link Method , 1977, Comput. J..

[6]  Micha Sharir,et al.  Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..

[7]  Arnold L. Rosenberg,et al.  Stabbing line segments , 1982, BIT.

[8]  Micha Sharir,et al.  Separating two simple polygons by a sequence of translations , 2015, Discret. Comput. Geom..

[9]  Leonidas J. Guibas,et al.  A kinetic framework for computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[10]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[11]  Arie Tamir,et al.  Improved Complexity Bounds for Center Location Problems on Networks by Using Dynamic Data Structures , 1988, SIAM J. Discret. Math..

[12]  Micha Sharir,et al.  Triangles in space or building (and analyzing) castles in the air , 1990, Comb..

[13]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[14]  David Avis,et al.  Algorithms for high dimensional stabbing problems , 1990, Discret. Appl. Math..

[15]  Micha Sharir,et al.  On the Two-Dimensional Davenport Schinzel Problem , 2018, J. Symb. Comput..

[16]  Godfried T. Toussaint,et al.  Movable Separability of Sets , 1985 .

[17]  Herbert Edelsbrunner,et al.  The upper envelope of piecewise linear functions: Tight bounds on the number of faces , 1989, Discret. Comput. Geom..

[18]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[19]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[20]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[21]  Michael McKenna Worst-case optimal hidden-surface removal , 1987, TOGS.

[22]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[23]  Ferenc Dévai,et al.  Quadratic bounds for hidden line elimination , 1986, SCG '86.

[24]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[25]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[26]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[27]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..