Validation of an automated blood culture system for sterility testing of cell therapy products.

[1]  C. Burnham,et al.  Sterility testing of apheresis hematopoietic progenitor cell products using an automated blood culture system , 2013, Transfusion.

[2]  B. Toye,et al.  Evaluation of the sterility testing process of hematopoietic stem cells at Canadian Blood Services , 2012, Transfusion.

[3]  L. Goldani,et al.  Autologous transplant: microbial contamination of hematopoietic stem cell products. , 2012, The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases.

[4]  A. Wieser,et al.  MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review) , 2012, Applied Microbiology and Biotechnology.

[5]  R. Gupta,et al.  Evaluation of growth based rapid microbiological methods for sterility testing of vaccines and other biological products. , 2011, Vaccine.

[6]  S. Gillespie,et al.  Approaches to measure the fitness of Burkholderia cepacia complex isolates. , 2010, Journal of medical microbiology.

[7]  Hermann Einsele,et al.  Guidelines for Preventing Infectious Complications among Hematopoietic Cell Transplantation Recipients: A Global Perspective , 2009, Biology of Blood and Marrow Transplantation.

[8]  S. Lucas,et al.  Les incidents et effets indésirables de biovigilance : analyse descriptive des données nationales après quatre années de pratique , 2008 .

[9]  K. Quek,et al.  Evaluation of the routine use of the anaerobic bottle when using the BACTEC blood culture system. , 2007, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[10]  P. Murray,et al.  Sterility testing of cell therapy products: parallel comparison of automated methods with a CFR‐compliant method , 2006, Transfusion.

[11]  D. Kadidlo,et al.  Microbial contamination of hematopoietic stem cell products: incidence and clinical sequelae. , 2006, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[12]  R. Kamble,et al.  Microbial contamination of hematopoietic progenitor cell grafts—incidence, clinical outcome, and cost‐effectiveness: an analysis of 735 grafts , 2005, Transfusion.

[13]  P. Murray,et al.  Comparison of automated culture systems with a CFR/USP-compliant method for sterility testing of cell-therapy products. , 2004, Cytotherapy.

[14]  D. Hospenthal,et al.  Direct Comparison of the BACTEC 9240 and BacT/ALERT 3D Automated Blood Culture Systems for Candida Growth Detection , 2004, Journal of Clinical Microbiology.

[15]  D. Huhn,et al.  Bacterial Contamination of Autologous Bone Marrow: Reinfusion of Culture-Positive Grafts Does Not Result in Clinical Sequelae during the Posttransplantation Course , 1998, Vox Sanguinis.

[16]  J. Ritz,et al.  Sources and sequelae of bacterial contamination of hematopoietic stem cell components: implications for the safety of hematotherapy and graft engineering , 1996, Transfusion.

[17]  P. Zorzi,et al.  [Events and adverse reactions in biovigilance: Descriptive analysis of French national data following a four-year practical experience]. , 2008, Transfusion Clinique et Biologique.

[18]  J. M. Fernández,et al.  Quality control of bacterial contamination in autologous peripheral blood stem cells for transplantation. , 2004, Haematologica.

[19]  W. Rybka,et al.  Favorable outcome after infusion of coagulase-negative staphylococci-contaminated peripheral blood hematopoietic cells for autologous transplantation. , 2003, Archives of pathology & laboratory medicine.