Second order scalar perturbations induced by primordial curvature and tensor perturbations

. The primordial perturbations will inevitably generate higher order perturbations. We study the second order scalar perturbations generated by the primordial curvature and tensor perturbations in the radiation-dominated era. After presenting all the possible second-order source terms, we obtain the explicit expressions of the kernel functions and the power spectra of the second order scalar perturbations. The contributions from the initial second-order perturbations are considered. We calculate the power spectra of second order scalar perturbations for different tensor-to-scalar ratio r .

[1]  Sai Wang,et al.  Bayesian Implications for the Primordial Black Holes from NANOGrav’s Pulsar-Timing Data Using the Scalar-Induced Gravitational Waves , 2022, Universe.

[2]  Huixian Zhu,et al.  Missing one-loop contributions in secondary gravitational waves , 2022, Physical Review D.

[3]  Z. Chang,et al.  Primordial black holes and third order scalar induced gravitational waves , 2022, Chinese Physics C.

[4]  Z. Chang,et al.  Gravitational waves from primordial scalar and tensor perturbations , 2022, Physical Review D.

[5]  Z. Chang,et al.  Impact of the free-streaming neutrinos to the second order induced gravitational waves , 2022, The European Physical Journal C.

[6]  Z. Chang,et al.  The cosmological vector modes from a monochromatic primordial power spectrum , 2022, Journal of Cosmology and Astroparticle Physics.

[7]  Antonio da Silva,et al.  New horizons for fundamental physics with LISA , 2022, Living Reviews in Relativity.

[8]  N. Bartolo,et al.  Signatures of Primordial Gravitational Waves on the Large-Scale Structure of the Universe. , 2021, Physical review letters.

[9]  G. Domènech Scalar Induced Gravitational Waves Review , 2021, Universe.

[10]  Miguel Ángel Martínez,et al.  Search for a Scalar Induced Stochastic Gravitational Wave Background in the Third LIGO-Virgo Observing Run. , 2021, Physical review letters.

[11]  Z. Chang,et al.  The third order scalar induced gravitational waves , 2021, Journal of Cosmology and Astroparticle Physics.

[12]  V. Vennin,et al.  Gravitational waves from a universe filled with primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[13]  Yi-Fu Cai,et al.  Primordial black holes and gravitational waves from resonant amplification during inflation , 2020, 2010.03537.

[14]  Keisuke Inomata Analytic solutions of scalar perturbations induced by scalar perturbations , 2020, 2008.12300.

[15]  M. Sasaki,et al.  Induced gravitational waves as a probe of thermal history of the universe , 2020, Journal of Cosmology and Astroparticle Physics.

[16]  C. Broeck,et al.  Prospects for fundamental physics with LISA , 2020, General Relativity and Gravitation.

[17]  R. Cai,et al.  Primordial black holes and gravitational waves from parametric amplification of curvature perturbations , 2019, Journal of Cosmology and Astroparticle Physics.

[18]  Jinn-Ouk Gong Analytic Integral Solutions for Induced Gravitational Waves , 2019, The Astrophysical Journal.

[19]  R. Cai,et al.  Pulsar timing array constraints on the induced gravitational waves , 2019, Journal of Cosmology and Astroparticle Physics.

[20]  Q. Huang,et al.  Probing primordial–black-hole dark matter with scalar induced gravitational waves , 2019, Physical Review D.

[21]  K. Kohri,et al.  Prospective constraints on the primordial black hole abundance from the stochastic gravitational-wave backgrounds produced by coalescing events and curvature perturbations , 2019, Physical Review D.

[22]  Keisuke Inomata,et al.  Gravitational waves induced by scalar perturbations as probes of the small-scale primordial spectrum , 2018, Physical Review D.

[23]  A. Lewis,et al.  Primordial Black Hole Dark Matter: LISA Serendipity. , 2018, Physical review letters.

[24]  R. Cai,et al.  Gravitational Waves Induced by Non-Gaussian Scalar Perturbations. , 2018, Physical review letters.

[25]  J. García-Bellido,et al.  Probing non-Gaussian stochastic gravitational wave backgrounds with LISA , 2018, Journal of Cosmology and Astroparticle Physics.

[26]  K. Kohri,et al.  Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations , 2018, Physical Review D.

[27]  S. Saga The Vector Mode in the Second-order Cosmological Perturbation Theory , 2018 .

[28]  Yang Zhang,et al.  Second-order cosmological perturbations. II. Produced by scalar-tensor and tensor-tensor couplings , 2017, 1710.06639.

[29]  J. García-Bellido,et al.  Gravitational wave signatures of inflationary models from Primordial Black Hole dark matter , 2017, 1707.02441.

[30]  T. Yanagida,et al.  Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments , 2016, 1611.06130.

[31]  T. Nakama,et al.  Primordial black holes as a novel probe of primordial gravitational waves. II. Detailed analysis , 2016, 1605.04482.

[32]  Karim A. Malik,et al.  Vector and tensor contributions to the curvature perturbation at second order , 2015, 1507.06922.

[33]  T. Nakama,et al.  Primordial black holes as a novel probe of primordial gravitational waves , 2015, 1506.05228.

[34]  Daisuke Yamauchi,et al.  Weak lensing induced by second-order vector mode , 2015, 1505.02774.

[35]  C. Byrnes,et al.  Signatures of non-gaussianity in the isocurvature modes of primordial black hole dark matter , 2015, 1503.01505.

[36]  K. Kohri,et al.  Observable induced gravitational waves from an early matter phase , 2013, 1303.4519.

[37]  Obinna Umeh,et al.  xPand: an algorithm for perturbing homogeneous cosmologies , 2013, 1302.6174.

[38]  Daisuke Yamauchi,et al.  Weak lensing generated by vector perturbations and detectability of cosmic strings , 2012, 1205.2139.

[39]  K. Kohri,et al.  Observable Spectra of Induced Gravitational Waves from Inflation , 2012, 1203.4663.

[40]  E. Bugaev,et al.  Induced gravitational wave background and primordial black holes , 2009, 0908.0664.

[41]  J. Yokoyama,et al.  Gravitational-wave background as a probe of the primordial black-hole abundance. , 2008, Physical review letters.

[42]  R. Maartens,et al.  The cosmological background of vector modes , 2008, 0812.1349.

[43]  Karim A. Malik,et al.  Cosmological perturbations , 2008, Series on the Foundations of Natural Science and Technology.

[44]  R. Smith,et al.  Analytic model for the bispectrum of galaxies in redshift space , 2007, 0712.0017.

[45]  C. Clarkson,et al.  Vector modes generated by primordial density fluctuations , 2007, 0709.1619.

[46]  P. Steinhardt,et al.  Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations , 2007, hep-th/0703290.

[47]  D. Wands,et al.  Cosmological gravitational wave background from primordial density perturbations , 2006, gr-qc/0612013.

[48]  S. Matarrese,et al.  Gauge-invariant temperature anisotropies and primordial non-Gaussianity. , 2004, Physical review letters.

[49]  E. Komatsu,et al.  Non-Gaussianity from inflation: theory and observations , 2004, Physics Reports.

[50]  R. Durrer Cosmological perturbation theory , 2004, astro-ph/0402129.

[51]  S. Matarrese,et al.  CMB polarization from secondary vector and tensor modes , 2003, Physical Review D.

[52]  M. Kamionkowski,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1996, astro-ph/9609132.

[53]  Durrer Light deflection in perturbed Friedmann universes. , 1994, Physical review letters.

[54]  Hume A. Feldman,et al.  Theory of cosmological perturbations , 1992 .