Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering

Understanding the spin dynamics in magnetic nanostructures is important for spintronics, but so far it has been impossible to probe the spin dynamics directly. A neutron-scattering technique providing direct information about dynamical two-spin correlations in a molecular nanomagnet has now been demonstrated.

[1]  N. Aliaga-Alcalde,et al.  Quantum Coherence in an Exchange-Coupled Dimer of Single-Molecule Magnets , 2003, Science.

[2]  A. Caneschi,et al.  Spin dynamics and tunneling of the Néel vector in theFe10magnetic wheel , 2005 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  F Troiani,et al.  Molecular engineering of antiferromagnetic rings for quantum computation. , 2004, Physical review letters.

[5]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[6]  T. Mitra,et al.  Quantum oscillations in a molecular magnet , 2008, Nature.

[7]  M. Nelkin,et al.  Theory of Thermal Neutron Scattering , 1972 .

[8]  H. Güdel,et al.  Quantum phase interference and Néel-vector tunneling in antiferromagnetic molecular wheels. , 2009, Physical review letters.

[9]  F. Carsughi,et al.  Microscopic spin Hamiltonian of a Cr 8 antiferromagnetic ring from inelastic neutron scattering , 2003 .

[10]  S. Carretta,et al.  Topology and spin dynamics in magnetic molecules , 2005 .

[11]  W. Marsden I and J , 2012 .

[12]  W. Wernsdorfer,et al.  Quantum phase interference and parity effects in magnetic molecular clusters , 1999, Science.

[13]  S. Blundell,et al.  Will spin-relaxation times in molecular magnets permit quantum information processing? , 2006, Physical review letters.

[14]  C J Wedge,et al.  Chemical engineering of molecular qubits. , 2012, Physical review letters.

[15]  P. Kögerler,et al.  Competing spin phases in geometrically frustrated magnetic molecules. , 2004, Physical review letters.

[16]  C. Lutz,et al.  Controlling the state of quantum spins with electric currents , 2010 .

[17]  J. Overgaard,et al.  The magnetic möbius strip: synthesis, structure, and magnetic studies of odd-numbered antiferromagnetically coupled wheels. , 2004, Angewandte Chemie.

[18]  G. H. Lander,et al.  Neutron Data Booklet , 2003 .

[19]  Cyrus F. Hirjibehedin,et al.  Spin Coupling in Engineered Atomic Structures , 2006, Science.

[20]  W. Wernsdorfer,et al.  Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets , 2002, Nature.

[21]  D. Eigler,et al.  Bistability in Atomic-Scale Antiferromagnets , 2012, Science.

[22]  A. Barra,et al.  Magnetic anisotropy of the antiferromagnetic ring [Cr8F8Piv16]. , 2002, Chemistry.

[23]  W. Wernsdorfer,et al.  Graphene spintronic devices with molecular nanomagnets. , 2011, Nano letters.

[24]  M. Dressel,et al.  Direct observation of quantum coherence in single-molecule magnets. , 2008, Physical review letters.

[25]  R. Wiesendanger,et al.  Current-Induced Magnetization Switching with a Spin-Polarized Scanning Tunneling Microscope , 2007, Science.

[26]  Marco Affronte,et al.  Magnetic Anisotropy of Cr7Ni Spin Clusters on Surfaces , 2012 .

[27]  Oliver Waldmann,et al.  Spin dynamics of finite antiferromagnetic Heisenberg spin rings , 2001 .

[28]  Wang,et al.  Critical Behavior of the S=3/2 Antiferromagnetic Heisenberg Chain. , 1996, Physical review letters.

[29]  Marco Affronte,et al.  Engineering the coupling between molecular spin qubits by coordination chemistry. , 2009, Nature nanotechnology.

[30]  W. Wernsdorfer,et al.  Entanglement in supramolecular spin systems of two weakly coupled antiferromagnetic rings (purple-Cr7Ni). , 2010, Physical review letters.

[31]  Stefan Blügel,et al.  Atom-by-atom engineering and magnetometry of tailored nanomagnets , 2012, Nature Physics.

[32]  D. Loss,et al.  Thermodynamics and spin-tunneling dynamics in ferric wheels with excess spin , 2001, cond-mat/0107025.

[33]  R. Wiesendanger,et al.  Realizing All-Spin–Based Logic Operations Atom by Atom , 2011, Science.

[34]  Marshall Luban,et al.  Rotational modes in molecular magnets with antiferromagnetic Heisenberg exchange , 2000 .

[35]  D. Loss,et al.  Spin-electric coupling in molecular magnets. , 2008, Physical review letters.

[36]  M. Shiraishi,et al.  Molecular Spintronics , 2011, 1102.4151.

[37]  P. Santini,et al.  Evidence of spin singlet ground state in the frustrated antiferromagnetic ring Cr8 Ni , 2009 .

[38]  A. Talarico,et al.  Magnetic memory of a single-molecule quantum magnet wired to a gold surface. , 2009, Nature materials.

[39]  Eugenio Coronado,et al.  Spin qubits with electrically gated polyoxometalate molecules. , 2007, Nature nanotechnology.

[40]  J. Ollivier,et al.  IN5 Cold Neutron Time-of-Flight Spectrometer, Prepared to Tackle Single Crystal Spectroscopy , 2011 .

[41]  Edwige Otero,et al.  Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets , 2010, Nature.

[42]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[43]  J. Schnack Effects of frustration on magnetic molecules: a survey from Olivier Kahn until today. , 2009, Dalton transactions.

[44]  Robert Bewley,et al.  LET, a cold neutron multi-disk chopper spectrometer at ISIS , 2011 .

[45]  F Troiani,et al.  Molecular nanomagnets as quantum simulators. , 2011, Physical review letters.

[46]  H. Mutka,et al.  Exchange-coupling constants, spin density map, and Q dependence of the inelastic neutron scattering intensity in single-molecule magnets , 2007, cond-mat/0703613.

[47]  Friedman,et al.  Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. , 1996, Physical review letters.

[48]  L. Thomas,et al.  Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets , 1996, Nature.

[49]  Elementary excitations in the cyclic molecular nanomagnet Cr8. , 2003, Physical review letters.