LIINUS/SERPIL: a design study for interferometric imaging spectroscopy at the LBT

We present two design concepts and the science drivers of a proposed near-infrared interferometric integral field spectrograph for the LBT. This instrument will expand the capabilities of the currently-under-construction interferometric camera LINC-NIRVANA with spectroscopy by means of an integral field unit (IFU) located inside the LINC cryostat. Two instrument concepts have been studied in detail: a microlens array IFU with a spectrograph built entirely inside LINC (the LIINUS approach), and a lenslet+fibers IFU feeding an external spectrograph (the SERPIL approach). In both cases, the instrument incorporates imaging interferometry with integral field spectroscopy, an ideal combination for detailed studies of astronomical objects down to below 10mas angular resolution in the near-infrared. The scientific applications range from solar system studies and spectroscopy of exoplanets to the dynamics of stars and gas in the central regions of the Milky Way and other nearby galaxies.

[1]  Roberto Ragazzoni,et al.  The LINC-NIRVANA interferometric imager for the Large Binocular Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[2]  N. Thatte,et al.  3D: The next generation near-infrared imaging spectrometer , 1996 .

[3]  Christof Iserlohe,et al.  Near-infrared integral-field spectroscopy of HD209458b , 2006, SPIE Astronomical Telescopes + Instrumentation.

[4]  James A. Arns,et al.  Volume-phase holographic gratings and their potential for astronomical applications , 1998, Astronomical Telescopes and Instrumentation.

[5]  T. M. Herbst,et al.  LIINUS/SERPIL: a design study for interferometric imaging spectroscopy at the LBT , 2006, SPIE Astronomical Telescopes + Instrumentation.

[6]  Anthony J. Horton,et al.  Coupling light into optical fibres near the diffraction limit , 2006, SPIE Astronomical Telescopes + Instrumentation.

[7]  Fraser Clarke,et al.  SWIFT: An adaptive optics assisted I/z band integral field spectrograph , 2006 .

[8]  Evencio Mediavilla,et al.  An optical fiber system to perform bidimensional spectroscopy , 1991 .

[9]  Norbert N. Hubin,et al.  Implementation of MACAO for SINFONI at the VLT, in NGS and LGS modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[10]  T. M. Herbst,et al.  LIINUS: a design study for interferometric imaging spectroscopy at the LBT , 2008, Astronomical Telescopes + Instrumentation.

[11]  R. Abuter,et al.  The Star-forming Torus and Stellar Dynamical Black Hole Mass in the Seyfert 1 Nucleus of NGC 3227* , 2006 .

[12]  Ralf Bender,et al.  HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole , 2005, astro-ph/0509839.

[13]  T. Paumard,et al.  The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation , 2006, astro-ph/0601268.

[14]  R. Genzel,et al.  MOLECULAR GAS STREAMERS FEEDING AND OBSCURING THE ACTIVE NUCLEUS OF NGC 1068 , 2008, 0809.4943.

[15]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[16]  R. Genzel,et al.  SINFONI adaptive optics integral field spectroscopy of the Circinus Galaxy , 2006 .

[17]  E. Pecontal,et al.  The integral field spectrograph TIGER. , 1988 .

[18]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[19]  Arne L. Ardeberg,et al.  New design for integral field spectroscopy with 8-m telescopes , 1997 .

[20]  J. Miller,et al.  Spectropolarimetry and the nature of NGC 1068 , 1985 .

[21]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[22]  M. Malkan,et al.  Circumnuclear Gas in Seyfert 1 Galaxies: Morphology, Kinematics, and Direct Measurement of Black Hole Masses , 2007, 0707.0611.

[23]  Konrad R. W. Tristram Mid-infrared interferometry of nearby Active Galactic Nuclei , 2007 .

[24]  R. Genzel,et al.  A Close Look at Star Formation around Active Galactic Nuclei , 2007, 0704.1374.

[25]  A. Eckart,et al.  Observations of stellar proper motions near the Galactic Centre , 1996, Nature.

[26]  T. M. Herbst,et al.  Coupling LBT's double pupil into optical fibers , 2008, Astronomical Telescopes + Instrumentation.

[27]  Berkeley,et al.  On the Nature of the Fast-Moving Star S2 in the Galactic Center , 2007, 0711.3344.

[28]  Andreas Quirrenbach,et al.  OSIRIS: infrared integral field spectrograph for the Keck adaptive optics system , 2003, SPIE Astronomical Telescopes + Instrumentation.

[29]  Ian R. Parry,et al.  SPIRAL Phase A: A Prototype Integral Field Spectrograph for the Anglo-AustralianTelescope , 2001 .

[30]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[31]  R. Lenzen,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[32]  G. Weigelt,et al.  Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068 , 2006, astro-ph/0602494.

[33]  E. Oliva,et al.  Achromatic lens systems for near infrared instruments. , 1995 .

[34]  F. Roddier,et al.  Coupling starlight into single-mode fiber optics. , 1988, Applied optics.

[35]  Los Angeles,et al.  Diffraction-limited Imaging Spectroscopy of the Sagittarius A* Region Using OSIRIS, a New Keck Instrument , 2006, astro-ph/0605253.

[36]  James Roger P. Angel,et al.  The Large Binocular Telescope interferometer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[37]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.