Learning Saliency Maps for Object Categorization

We present a novel approach for object category recognition that can find objects in challenging conditions using visual attention technique. It combines saliency maps very closely with the extraction of random subwindows for classification purposes. The maps are built online by the classifier while being used by it to classify the image.

[1]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[2]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  David Salesin,et al.  Wavelets for computer graphics: a primer.1 , 1995, IEEE Computer Graphics and Applications.

[5]  Yiming Ye,et al.  Where to look next in 3D object search , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[6]  E. J. Stollnitz,et al.  Wavelets for Computer Graphics: A Primer Part 2 , 1995 .

[7]  Timothy F. Cootes,et al.  Locating Salient Object Features , 1998, BMVC.

[8]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[9]  Nicu Sebe,et al.  Comparing salient point detectors , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[10]  Pierre Geurts,et al.  Contributions to decision tree induction: bias/variance tradeoff and time series classification , 2002 .

[11]  Bernt Schiele,et al.  Saliency of Interest Points under Scale Changes , 2002, BMVC.

[12]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[13]  Thomas Serre,et al.  On the Role of Object-Specific Features for Real World Object Recognition in Biological Vision , 2002, Biologically Motivated Computer Vision.

[14]  B. Schiele,et al.  Interleaved Object Categorization and Segmentation , 2003, BMVC.

[15]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[16]  Shimon Ullman,et al.  Object recognition with informative features and linear classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[17]  Horst Bischof,et al.  Entropy based Saliency Maps for Object Recognition , 2004 .

[18]  Michael Lindenbaum,et al.  Dynamic Visual Search Using Inner-Scene Similarity: Algorithms and Inherent Limitations , 2004, ECCV.

[19]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[20]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[21]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[22]  Nuno Vasconcelos,et al.  Discriminant Saliency for Visual Recognition from Cluttered Scenes , 2004, NIPS.

[23]  C. Schmid,et al.  Scale-invariant shape features for recognition of object categories , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[24]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[25]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[26]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[27]  John K. Tsotsos,et al.  Towards a Biologically Plausible Active Visual Search Model , 2004, WAPCV.

[28]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[29]  Pietro Perona,et al.  On the usefulness of attention for object recognition , 2004 .

[30]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[31]  Raphaël Marée,et al.  Random subwindows for robust image classification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[33]  Laurent Itti,et al.  Combining attention and recognition for rapid scene analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[34]  Axel Pinz,et al.  Object Localization with Boosting and Weak Supervision for Generic Object Recognition , 2005, SCIA.

[35]  Cordelia Schmid,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.