A numerical approach for computing stability region of FO-PID controller

Abstract The paper proposes a new procedure which allows to define the parameters of a Fractional Order Proportional Integrative Derivative (FO-PID) controller that stabilizes a first-order plant with time-delay. The stabilizing FO-PID parameters complete set has been determined by the application of the Hermite–Biehler theorem to fractional order systems. The proposed procedure has been verified by computer simulations that confirm the effectiveness of the approach. The diffused PID controller industrial use and the verified capability of their non-integer order form justifies the timely FO-PID controller interest.

[1]  M. Čech,et al.  The fractional-order PID controller outperforms the classical one , 2006 .

[2]  Jeng-Fan Leu,et al.  Design of Optimal Fractional-Order PID Controllers , 2002 .

[3]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[4]  K. Moore,et al.  Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[5]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[6]  Hon Keung Kwan,et al.  Design of multidimensional spherically symmetric and constant group delay recursive digital filters with sum of powers-of-two coefficients , 1990 .

[7]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[8]  Mohammad Haeri,et al.  On robust stability of LTI fractional-order delay systems of retarded and neutral type , 2010, Autom..

[9]  C. Byrnes Root-Locus and Boundary Feedback Design for a Class of Distributed Parameter Systems , 1994 .

[10]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[11]  Shankar P. Bhattacharyya,et al.  Structure and synthesis of PID controllers , 2000 .

[12]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[13]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1994 .

[14]  R. Piche Graphical Feedback Stability Criterion for Undamped Continuous Elastic Systems , 1987 .

[15]  E. Zeheb,et al.  On stability test for a class of distributed parameter systems with delays , 1986 .

[16]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[17]  Y. Chen,et al.  A robust tuning method for fractional order PI controllers , 2006 .

[18]  I. Podlubny Fractional differential equations , 1998 .

[19]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[20]  J. S. Karmarkar,et al.  Stability analysis of systems with time delay , 1970 .

[21]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[22]  Shankar P. Bhattacharyya,et al.  New results on the synthesis of PID controllers , 2002, IEEE Trans. Autom. Control..

[23]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[24]  J. E. Marshall,et al.  Direct stability boundary method for distributed systems with discrete delay , 1988 .

[25]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[26]  Y. Chen,et al.  ON AUTO-TUNING OF FRACTIONAL ORDER PIΛ Dμ CONTROLLERS , 2006 .

[27]  Jonathan R. Partington,et al.  Analysis of fractional delay systems of retarded and neutral type , 2002, Autom..

[28]  G. Reis Stability of distributed systems with feedback via michailov's criterion , 1972 .

[29]  N. Ozturk,et al.  An analytic stability test for a certain class of distributed parameter systems with a distributed lag , 1984 .

[30]  J. A. Tenreiro Machado,et al.  A Fractional Calculus Perspective of PID Tuning , 2003 .