Computational homogenization of elasto-plastic porous metals

Abstract The effective material response of ductile metals containing spherical pores at volume fractions between 0.1% and 30% is investigated on a computational basis. Periodic hard core models of spherical voids are used in a Monte Carlo type finite element study. The objective of the study is the investigation of the pressure dependency of the deviatoric limit stress of the three-dimensional microstructures. In order to characterize the underlying morphology, the statistical properties of the unit cells are evaluated. The representativeness of the computational results is investigated. With respect to the local material response, the inelastic deformations within the unit cell are analyzed and compared for different types of boundary conditions. The computational results are related to existing analytical models and an extension of the Gurson–Tvergaard–Needleman model is proposed to overcome the observed discrepancies. The new model has only one additional parameter, and is found to efficiently predict the pressure dependency of the limit stress for all examined porosities.

[1]  P. Suquet On bounds for the overall potential of power law materials containing voids with an arbitrary shape , 1992 .

[2]  A. Huespe,et al.  On some topics for the numerical simulation of ductile fracture , 2008 .

[3]  Viggo Tvergaard,et al.  An analysis of ductile rupture in notched bars , 1984 .

[4]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[5]  Jinkook Kim,et al.  Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity , 2004 .

[6]  Joseph Pastor,et al.  Limit analysis and Gurson's model , 2005 .

[7]  J. Leblond,et al.  Ductile Fracture by Void Growth to Coalescence , 2010 .

[8]  T. Seifert,et al.  Plastic yielding in cyclically loaded porous materials , 2009 .

[9]  P. Suquet,et al.  Exact results and approximate models for porous viscoplastic solids , 1994 .

[10]  Hervé Moulinec,et al.  A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .

[11]  S. M. Graham,et al.  On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule , 2011 .

[12]  V. monchiet,et al.  An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields , 2007 .

[13]  Viggo Tvergaard,et al.  An analysis of ductile rupture modes at a crack tip , 1987 .

[14]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[15]  Somnath Ghosh,et al.  Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities , 2009 .

[16]  Kostas Danas,et al.  A finite-strain model for anisotropic viscoplastic porous media: I – Theory , 2009 .

[17]  P. Houtte,et al.  Void growth and coalescence in single crystals , 2010 .

[18]  Xiaosheng Gao,et al.  Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy , 2009 .

[19]  T. Böhlke The Voigt bound of the stress potential of isotropic viscoplastic FCC polycrystals , 2004 .

[20]  Dominique Jeulin,et al.  Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .

[21]  Bhushan Lal Karihaloo,et al.  Comprehensive structural integrity , 2003 .

[22]  Jean-Baptiste Leblond,et al.  Recent extensions of Gurson's model for porous ductile metals , 1997 .

[23]  J. Besson Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms , 2009 .

[24]  Jean Lemaitre,et al.  Local approach of fracture , 1986 .

[25]  Frédéric Feyel,et al.  Some elements of microstructural mechanics , 2003 .

[26]  Harm Askes,et al.  Representative volume: Existence and size determination , 2007 .

[27]  K. Danas,et al.  A finite-strain model for anisotropic viscoplastic porous media: II – Applications , 2009 .

[28]  Yuguo Sun,et al.  Analysis of shear localization in porous materials based on a lower bound approach , 1995 .

[29]  Martin Ostoja-Starzewski,et al.  Scaling function, anisotropy and the size of RVE in elastic random polycrystals , 2008 .

[30]  Q. Zheng,et al.  A Quantitative study of minimum sizes of representative volume elements of cubic polycrystals—numerical experiments , 2002 .

[31]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[32]  P. Steinmann,et al.  RVE-based studies on the coupled effects of void size and void shape on yield behavior and void growth at micron scales , 2006 .

[33]  B. J. Lee,et al.  Constitutive models for power-law viscous solids containing spherical voids , 2009 .

[34]  Joachim Schöberl,et al.  NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[35]  Xiaosheng Gao,et al.  Cell model for nonlinear fracture analysis – I. Micromechanics calibration , 1998 .

[36]  J. Michel,et al.  Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis , 2005 .

[37]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[38]  C. Shih,et al.  Continuum modeling of a porous solid with pressure-sensitive dilatant matrix , 2008 .

[39]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[40]  Pierre Suquet,et al.  The constitutive law of nonlinear viscous and porous materials , 1992 .

[41]  Karam Sab,et al.  Periodization of random media and representative volume element size for linear composites , 2005 .

[42]  V. monchiet,et al.  A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields , 2011 .

[43]  Jacques Besson,et al.  Continuum Models of Ductile Fracture: A Review , 2010 .

[44]  V. monchiet,et al.  Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids , 2008 .

[45]  S. Forest,et al.  Numerical study of creep in two-phase aggregates with a large rheology contrast : implications for the lower mantle , 2005 .

[46]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[47]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[48]  K. Danas,et al.  A homogenization-based constitutive model for isotropic viscoplastic porous media , 2008 .

[49]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[50]  P. Suquet,et al.  Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles , 1997 .

[51]  G. Perrin Contribution a l'etude theorique et numerique de la rupture ductile des metaux , 1992 .

[52]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[53]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[54]  C. J. Wilson,et al.  A tale of two viscosities , 2009 .

[55]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[56]  E. Schnack,et al.  Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations , 2009 .

[57]  Michel Bornert,et al.  Bounds and estimates for the effective yield surface of porous media with a uniform or a nonuniform distribution of voids , 2007 .

[58]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .