Generalized Discrete Ricci Flow

Surface Ricci flow is a powerful tool to design Riemannian metrics by user defined curvatures. Discrete surface Ricci flow has been broadly applied for surface parameterization, shape analysis, and computational topology. Conventional discrete Ricci flow has limitations. For meshes with low quality triangulations, if high conformality is required, the flow may get stuck at the local optimum of the Ricci energy. If convergence to the global optimum is enforced, the conformality may be sacrificed.

[1]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[2]  O. Schramm,et al.  On the convergence of circle packings to the Riemann map , 1996 .

[3]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[4]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[5]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[6]  Tao Ju Robust repair of polygonal models , 2004, SIGGRAPH 2004.

[7]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[8]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[9]  ShefferAlla,et al.  Mesh parameterization methods and their applications , 2006 .

[10]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[11]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[12]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[13]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[14]  Pierre Alliez,et al.  Spectral Conformal Parameterization , 2008, Comput. Graph. Forum.

[15]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[16]  Wei Zeng,et al.  Canonical homotopy class representative using hyperbolic structure , 2009, 2009 IEEE International Conference on Shape Modeling and Applications.

[17]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[18]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[19]  Shi-Min Hu,et al.  Optimal Surface Parameterization Using Inverse Curvature Map , 2008, IEEE Transactions on Visualization and Computer Graphics.

[20]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[21]  Ren Guo Local rigidity of inversive distance circle packing , 2009, 0903.1401.

[22]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[23]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[24]  Alla Sheffer,et al.  Mesh parameterization: theory and practice Video files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[25]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[26]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[27]  Tao Ju,et al.  Robust repair of polygonal models , 2004, ACM Trans. Graph..

[28]  Philip L. Bowers,et al.  Uniformizing Dessins and Belyi Maps Via Circle Packing , 2004 .

[29]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[30]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[31]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[32]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[33]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .

[34]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[35]  Hans-Peter Seidel,et al.  Linear angle based parameterization , 2007, Symposium on Geometry Processing.

[36]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[37]  Kenneth Stephenson,et al.  A circle packing algorithm , 2003, Comput. Geom..

[38]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[39]  Wei Zeng,et al.  Computing Teichmuller Shape Space , 2009, IEEE Transactions on Visualization and Computer Graphics.

[40]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[41]  Monica K. Hurdal,et al.  Planar Conformal Mappings of Piecewise Flat Surfaces , 2002, VisMath.