The Effect of Honeycomb Core Geometry on the Sound Transmission Performance of Sandwich Panels

[1]  M. El‐Raheb,et al.  Transmission of sound across a trusslike periodic panel; 2-D analysis , 1997 .

[2]  D. M. Campbell,et al.  Springer Handbook of Acoustics , 2015 .

[3]  U. Lee Equivalent continuum representation of lattice beams: spectral element approach , 1998 .

[4]  C. F. Ng,et al.  Low frequency sound insulation using stiffness control with honeycomb panels , 2008 .

[5]  P. Lord,et al.  Sound transmission through sandwich constructions , 1967 .

[6]  K. Evans,et al.  Models for the elastic deformation of honeycombs , 1996 .

[7]  E. M. Krokosky,et al.  Dilatational‐Mode Sound Transmission in Sandwich Panels , 1969 .

[8]  G. Fadel,et al.  Design of Chiral Honeycomb Meso-Structures for High Shear Flexure , 2010, DAC 2010.

[9]  Daniel R. Raichel The science and applications of acoustics , 2000 .

[10]  R. H. Lyon,et al.  Sound transmission loss characteristics of sandwich panel constructions , 1991 .

[11]  M. Möser,et al.  Engineering Acoustics: An Introduction to Noise Control , 2004 .

[12]  Farrokh Mistree,et al.  Design of multifunctional honeycomb materials , 2002 .

[13]  Massimo Ruzzene,et al.  Homogenization and equivalent in-plane properties of two-dimensional periodic lattices , 2008 .

[14]  D. L. McDowell,et al.  Heat sink applications of extruded metal honeycombs , 2005 .

[15]  Massimo Ruzzene,et al.  Structural-acoustic optimization of sandwich panels , 2005 .

[16]  D. McDowell,et al.  Generalized continuum modeling of 2-D periodic cellular solids , 2004 .

[17]  B. Watters,et al.  New Wall Design for High Transmission Loss or High Damping , 1959 .

[18]  Massimo Ruzzene Vibration and sound radiation of sandwich beams with honeycomb truss core , 2004 .

[19]  Tongan Wang,et al.  Predicting the Sound Transmission Loss of Sandwich Panels by Statistical Energy Analysis Approach , 2010 .

[20]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  Brigitte Kriszt,et al.  Handbook of cellular metals : production, processing, applications , 2002 .

[22]  Yong‐Joe Kim,et al.  Identification of Acoustic Characteristics of Honeycomb Sandwich Composite Panels Using Hybrid Analytical/Finite Element Method , 2013 .

[23]  T. S. Lok,et al.  FREE VIBRATION OF CLAMPED ORTHOTROPIC SANDWICH PANEL , 2000 .

[24]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[25]  Ke Liu,et al.  Prediction of Sound Transmission Loss for Finite Sandwich Panels Based on a Test Procedure on Beam Elements , 2013 .

[26]  Stephen R Reid,et al.  Dynamic crushing of honeycombs and features of shock fronts , 2009 .

[27]  Fabrizio Scarpa,et al.  Theoretical characteristics of the vibration of sandwich plates with in-plane negative poisson's ratio values , 2000 .

[28]  Jian-Qiao Sun,et al.  Structural-acoustic optimization of sandwich structures with cellular cores for minimum sound radiation , 2007 .

[29]  J. Summers,et al.  Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain , 2011 .

[30]  Tongan Wang,et al.  Assessment of sandwich models for the prediction of sound transmission loss in unidirectional sandwich panels , 2005 .

[31]  Clive L. Dym,et al.  Transmission of sound through sandwich panels , 1974 .

[32]  G. Fadel,et al.  Design of Honeycombs for Modulus and Yield Strain in Shear , 2012 .