The inverse problem in granulation modeling—Two different statistical approaches

This article is concerned with parameter estimation for a multidimensional population balance model for granulation. Experimental results were obtained by running a laboratory mixer with sodium carbonate and aqueous polyethylene glycol solutions. Subsequently, a prescan of suitable parameter combinations utilising the experimental results is performed, and a local surrogate model constructed around the best combination. For the actual estimation of the parameters and their uncertainties two different approaches are applied—a projection method and a Bayesian approach. It is found that the model predictions with the parameters obtained through both methods are similar. Furthermore, the uncertainties in the model predictions increase as the experimental uncertainties are increased. Studies of the marginal densities of two-parameter combinations obtained through the Bayesian approach show a correlation between the collision and breakage rate constant, giving potential hints for further model development. Furthermore, a bimodal distribution of the compaction rate constant is observed. © 2011 American Institute of Chemical Engineers AIChE J, 2011

[1]  Wolfgang Wagner,et al.  Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation , 2010, J. Comput. Phys..

[2]  James D. Litster,et al.  Growth and compaction behaviour of copper concentrate granules in a rotating drum , 2002 .

[3]  P. Mort,et al.  Critical parameters and limiting conditions in binder granulation of fine powders , 1997 .

[4]  R. Braatz,et al.  Robust Bayesian estimation of kinetics for the polymorphic transformation of L‐glutamic acid crystals , 2008 .

[5]  R. I. A. PATTERSON,et al.  The Linear Process Deferment Algorithm: A new technique for solving population balance equations , 2006, SIAM J. Sci. Comput..

[6]  H. Rumpf,et al.  Grundlagen und Methoden des Granulierens. 3. Teil: Überblick über die technischen Granulierverfahren , 1958 .

[7]  Hans Rumpf,et al.  Grundlagen und Methoden des Granulierens , 1958 .

[8]  J. Beck,et al.  Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters , 2009 .

[9]  Markus Kraft,et al.  Incorporating experimental uncertainties into multivariate granulation modelling , 2010 .

[10]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[11]  Chakravarthy Balaji,et al.  Estimation of parameters in multi-mode heat transfer problems using Bayesian inference : Effect of noise and a priori , 2008 .

[12]  Markus Kraft,et al.  Resolving conflicting parameter estimates in multivariate population balance models , 2010 .

[13]  Markus Kraft,et al.  Parameter estimation in a multidimensional granulation model , 2010 .

[14]  Anders Rasmuson,et al.  High shear wet granulation modelling—a mechanistic approach using population balances , 2005 .

[15]  Markus Kraft,et al.  Two methods for sensitivity analysis of coagulation processes in population balances by a Monte Carlo method , 2006 .

[16]  William H. Green,et al.  Toward a comprehensive model of the synthesis of TiO2 particles from TiCl4 , 2007 .

[17]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[18]  Markus Kraft,et al.  Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction , 2007 .

[19]  Markus Kraft,et al.  Droplets population balance in a rotating disc contactor: An inverse problem approach , 2006 .

[20]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[21]  Markus Kraft,et al.  A new numerical approach for the simulation of the growth of inorganic nanoparticles , 2006 .

[22]  B. J. Ennis,et al.  Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review , 2001 .

[23]  M. Hounslow,et al.  An investigation into the kinetics of liquid distribution and growth in high shear mixer agglomeration , 1998 .

[24]  Terese Løvås,et al.  Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion , 2009 .

[25]  Francis J. Doyle,et al.  A three-dimensional population balance model of granulation with a mechanistic representation of the nucleation and aggregation phenomena , 2008 .

[26]  Stefan Heinrich,et al.  Unsteady and steady-state particle size distributions in batch and continuous fluidized bed granulation systems , 2002 .

[27]  Michael J. Hounslow,et al.  Influence of liquid binder dispersion on agglomeration in an intensive mixer , 2008 .

[28]  Gabriel I. Tardos,et al.  Scale-up of Agglomeration Processes using Transformations , 1999 .

[29]  F. Štěpánek,et al.  Experimental study of wet granulation in fluidized bed: impact of the binder properties on the granule morphology. , 2007, International journal of pharmaceutics.

[30]  Markus Kraft,et al.  Modelling soot formation in a premixed flame using an aromatic-site soot model and an improved oxidation rate , 2009 .

[31]  J. M. Bernardo,et al.  Bayesian Methodology in Statistics , 2009 .

[32]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[33]  Doraiswami Ramkrishna,et al.  An inverse problem in agglomeration kinetics , 1986 .

[34]  Markus Kraft,et al.  A Monte Carlo methods for identification and sensitivity analysis of coagulation processes , 2004 .

[35]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[36]  P. V. Danckwerts,et al.  GRANULE FORMATION BY THE AGGLOMERATION OF DAMP POWDERS PART I: THE MECHANISM OF GRANULE GROWTH , 1981 .

[37]  Paul R. Mort,et al.  Control of agglomerate attributes in a continuous binder-agglomeration process , 2001 .

[38]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[39]  Michael J. Hounslow,et al.  Kinetics of fluidised bed melt granulation I: The effect of process variables , 2006 .

[40]  Kalanadh V.S. Sastry,et al.  Similarity size distribution of agglomerates during their growth by coalescence in granulation or green pelletization , 1975 .

[41]  Brian Scarlett,et al.  Population balances for particulate processes - a volume approach. , 2002 .

[42]  R. Ocampo-Pérez,et al.  Adsorption of Fluoride from Water Solution on Bone Char , 2007 .

[43]  P. C. Kapur,et al.  Coalescence Model for Granulation , 1969 .

[44]  Alan Jones,et al.  Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data: the calcium oxalate system , 2000 .

[45]  Ingmar Nopens,et al.  PBM and activated sludge flocculation: From experimental data to calibrated model , 2005 .

[46]  M NewittD,et al.  A contribution to the theory and practice of granulation. , 1958 .

[47]  Markus Kraft,et al.  Statistical Approximation of the Inverse Problem in Multivariate Population Balance Modeling , 2010 .

[48]  Markus Kraft,et al.  A Stochastic Algorithm for Parametric Sensitivity in Smoluchowski's Coagulation Equation , 2010, SIAM J. Numer. Anal..

[49]  P. I. Barton,et al.  Effective parameter estimation within a multi-dimensional population balance model framework , 2010 .

[50]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[51]  Francis J. Doyle,et al.  Model predictive control of a granulation system using soft output constraints and prioritized control objectives , 2001 .

[52]  J. Bridgwater,et al.  A case study of particle mixing in a ploughshare mixer using Positron Emission Particle Tracking , 1998 .

[53]  Alvaro Realpe,et al.  Growth kinetics and mechanism of wet granulation in a laboratory-scale high shear mixer: Effect of initial polydispersity of particle size , 2008 .

[54]  D. Lindley The Philosophy of Statistics , 2000 .

[55]  Josef Stoer,et al.  Numerische Mathematik 2 , 1990 .

[56]  James R. Norris,et al.  Coupling Algorithms for Calculating Sensitivities of Smoluchowski's Coagulation Equation , 2010, SIAM J. Sci. Comput..