The symmetric quadratic knapsack problem: approximation and scheduling applications

This paper reviews two problems of Boolean non-linear programming: the Symmetric Quadratic Knapsack Problem and the Half-Product Problem. The problems are related since they have a similar quadratic non-separable objective function. For these problems, we focus on the development of fully polynomial-time approximation schemes, especially of those with strongly polynomial time, and on their applications to various scheduling problems.

[1]  Chung-Yee Lee,et al.  Single machine flow-time scheduling with scheduled maintenance , 1992, Acta Informatica.

[2]  Joachim Breit,et al.  Improved approximation for non-preemptive single machine flow-time scheduling with an availability constraint , 2007, Eur. J. Oper. Res..

[3]  Arie Tamir,et al.  A strongly polynomial algorithm for minimum convex separable quadratic cost flow problems on two-terminal series—parallel networks , 1993, Math. Program..

[4]  Eugeniusz Nowicki,et al.  A survey of results for sequencing problems with controllable processing times , 1990, Discret. Appl. Math..

[5]  L. Khachiyan,et al.  The polynomial solvability of convex quadratic programming , 1980 .

[6]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[7]  J. M. Moore,et al.  A Functional Equation and its Application to Resource Allocation and Sequencing Problems , 1969 .

[8]  Jacek Blazewicz,et al.  An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints , 2005, Eur. J. Oper. Res..

[9]  Gerhard J. Woeginger,et al.  The quadratic 0-1 knapsack problem with series-parallel support , 2002, Oper. Res. Lett..

[10]  Guoqing Wang,et al.  Preemptive Scheduling with Availability Constraints to Minimize Total Weighted Completion Times , 2005, Ann. Oper. Res..

[11]  John J. Kanet,et al.  Minimizing Variation of Flow Time in Single Machine Systems , 1981 .

[12]  Chin-Chia Wu,et al.  Some single-machine scheduling problems with a truncation learning effect , 2011, Comput. Ind. Eng..

[13]  Jing Wang,et al.  An FPTAS for the Minimum Total Weighted Tardiness Problem with a Fixed Number of Distinct Due Dates , 2009, COCOON.

[14]  HANS KELLERER,et al.  Minimizing Total Weighted earliness-tardiness on a Single Machine around a Small Common due date: an FPTAS Using Quadratic Knapsack , 2010, Int. J. Found. Comput. Sci..

[15]  Imed Kacem Fully polynomial time approximation scheme for the total weighted tardiness minimization with a common due date , 2010, Discret. Appl. Math..

[16]  David Pisinger,et al.  The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..

[17]  Y. Fathi,et al.  Heuristics for the common due date weighted tardiness problem , 1990 .

[18]  Chung-Yee Lee,et al.  Machine scheduling with an availability constraint , 1996, J. Glob. Optim..

[19]  Hans Kellerer,et al.  An efficient fully polynomial approximation scheme for the Subset-Sum Problem , 2003, J. Comput. Syst. Sci..

[20]  Chung-Lun Li,et al.  Single machine scheduling to minimize total compression plus weighted flow cost is NP-hard , 2001, Inf. Process. Lett..

[21]  Endre Boros,et al.  Minimization of Half-Products , 1998, Math. Oper. Res..

[22]  Jay B. Ghosh,et al.  FPTAS for half-products minimization with scheduling applications , 2008, Discret. Appl. Math..

[23]  Wieslaw Kubiak,et al.  A half-product based approximation scheme for agreeably weighted completion time variance , 2005, Eur. J. Oper. Res..

[24]  Joseph Geunes,et al.  On a nonseparable convex maximization problem with continuous knapsack constraints , 2007, Oper. Res. Lett..

[25]  Gerhard J. Woeginger An Approximation Scheme for Minimizing Agreeably Weighted Variance on a Single Machine , 1999, INFORMS J. Comput..

[26]  Chengbin Chu,et al.  A survey of scheduling with deterministic machine availability constraints , 2010, Comput. Ind. Eng..

[27]  Imed Kacem Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval , 2008, Comput. Ind. Eng..

[28]  Prabuddha De,et al.  On the Minimization of Completion Time Variance with a Bicriteria Extension , 1992, Oper. Res..

[29]  P. Pardalos Complexity in numerical optimization , 1993 .

[30]  Dar-Li Yang,et al.  Minimizing the makespan in a single machine scheduling problem with a time-based learning effect , 2006, Inf. Process. Lett..

[31]  Yih-Long Chang,et al.  Minimizing Mean Squared Deviation of Completion Times About a Common Due Date , 1987 .

[32]  Alexander H. G. Rinnooy Kan,et al.  Single machine flow-time scheduling with a single breakdown , 1989, Acta Informatica.

[33]  Wieslaw Kubiak,et al.  Completion time variance minimization on a single machine is difficult , 1993, Oper. Res. Lett..

[34]  J. A. Hoogeveen,et al.  Scheduling around a small common due date , 1991 .

[35]  Marc E. Posner,et al.  Earliness-Tardiness Scheduling Problems, I: Weighted Deviation of Completion Times About a Common Due Date , 1991, Oper. Res..

[36]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[37]  Chengbin Chu,et al.  Worst-case analysis of the WSPT and MWSPT rules for single machine scheduling with one planned setup period , 2008, Eur. J. Oper. Res..

[38]  Wieslaw Kubiak,et al.  Algorithms for Minclique Scheduling Problems , 1997, Discret. Appl. Math..

[39]  Han Hoogeveen,et al.  Some Comments on Sequencing with Controllable Processing Times , 2002, Computing.

[40]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[41]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[42]  Raymond G. Vickson,et al.  Two Single Machine Sequencing Problems Involving Controllable Job Processing Times , 1980 .

[43]  Joseph Y.-T. Leung,et al.  Handbook of Scheduling: Algorithms, Models, and Performance Analysis , 2004 .

[44]  Vitaly A. Strusevich,et al.  Single machine scheduling with controllable release and processing parameters , 2006, Discret. Appl. Math..

[45]  R. C. Monteiro,et al.  Interior path following primal-dual algorithms , 1988 .

[46]  P. Berman,et al.  Algorithms for the Least Distance Problem , 1993 .

[47]  Dorit S. Hochbaum,et al.  Complexity and algorithms for convex network optimization and other nonlinear problems , 2005, 4OR.

[48]  Leen Stougie,et al.  Universal Sequencing on a Single Machine , 2010, IPCO.

[49]  Hans Kellerer,et al.  Two simple constant ratio approximation algorithms for minimizing the total weighted completion time on a single machine with a fixed non-availability interval , 2009, Eur. J. Oper. Res..

[50]  Hans Kellerer,et al.  A fully polynomial approximation scheme for the single machine weighted total tardiness problem with a common due date , 2006, Theor. Comput. Sci..

[51]  Stavros G. Kolliopoulos,et al.  Approximation algorithms for minimizing the total weighted tardiness on a single machine , 2006, Theor. Comput. Sci..

[52]  Han Hoogeveen,et al.  New Lower and Upper Bounds for Scheduling Around a Small Common Due Date , 1994, Oper. Res..

[53]  Dvir Shabtay,et al.  A survey of scheduling with controllable processing times , 2007, Discret. Appl. Math..

[54]  Ali Ridha Mahjoub,et al.  Fully polynomial time approximation scheme for the weighted flow-time minimization on a single machine with a fixed non-availability interval , 2009, Comput. Ind. Eng..

[55]  Hans Kellerer,et al.  Improved Dynamic Programming in Connection with an FPTAS for the Knapsack Problem , 2004, J. Comb. Optim..

[56]  Alan G. Merten,et al.  Variance Minimization in Single Machine Sequencing Problems , 1972 .

[57]  Chuanli Zhao,et al.  Single machine scheduling with general job-dependent aging effect and maintenance activities to minimize makespan , 2010 .

[58]  Nicole Megow,et al.  Short Note on Scheduling on a Single Machine with one Non-availability Period , 2009 .

[59]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[60]  Xiaoqiang Cai,et al.  Minimization of agreeably weighted variance in single machine systems , 1995 .

[61]  Hans Kellerer,et al.  A New Fully Polynomial Time Approximation Scheme for the Knapsack Problem , 1999, J. Comb. Optim..

[62]  Martin Skutella,et al.  Convex quadratic and semidefinite programming relaxations in scheduling , 2001, JACM.

[63]  Bala Shetty,et al.  Quadratic resource allocation with generalized upper bounds , 1997, Oper. Res. Lett..

[64]  Vitaly A. Strusevich,et al.  Planning Machine Maintenance in Two-Machine Shop Scheduling , 2006, Oper. Res..

[65]  Wieslaw Kubiak,et al.  New Results on the Completion Time Variance Minimization , 1995, Discret. Appl. Math..

[66]  Chris N. Potts,et al.  Single machine scheduling models with deterioration and learning: handling precedence constraints via priority generation , 2008, J. Sched..

[67]  Chung-Yee Lee,et al.  Machine Scheduling with Availability Constraints , 2004, Handbook of Scheduling.

[68]  Wieslaw Kubiak,et al.  Minimization of ordered, symmetric half-products , 2005, Discret. Appl. Math..

[69]  Wieslaw Kubiak,et al.  Fast fully polynomial approximation schemes for minimizing completion time variance , 2002, Eur. J. Oper. Res..

[70]  Hans Kellerer,et al.  Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications , 2010, Algorithmica.

[71]  Suresh P. Sethi,et al.  Earliness-Tardiness Scheduling Problems, II: Deviation of Completion Times About a Restrictive Common Due Date , 1991, Oper. Res..

[72]  P. De,et al.  Note-A Note on the Minimization of Mean Squared Deviation of Completion Times About a Common Due Date , 1989 .

[73]  Jorge J. Moré,et al.  On the solution of concave knapsack problems , 1990, Math. Program..

[74]  Wieslaw Kubiak,et al.  Positive half-products and scheduling with controllable processing times , 2005, Eur. J. Oper. Res..

[75]  Wieslaw Kubiak,et al.  A Fully Polynomial Approximation Scheme for the Weighted Earliness-Tardiness Problem , 1999, Oper. Res..

[76]  Samuel Eilon,et al.  Minimising Waiting Time Variance in the Single Machine Problem , 1977 .

[77]  Vitaly A. Strusevich,et al.  Two-machine flow shop no-wait scheduling with machine maintenance , 2005, 4OR.

[78]  P. Brucker Review of recent development: An O( n) algorithm for quadratic knapsack problems , 1984 .

[79]  Suh-Jenq Yang,et al.  Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities , 2010 .

[80]  Alessandro Agnetis,et al.  Scheduling Problems with Two Competing Agents , 2004, Oper. Res..

[81]  Hans Kellerer,et al.  Approximation schemes for scheduling on a single machine subject to cumulative deterioration and maintenance , 2013, J. Sched..

[82]  Y. Jinjiang,et al.  THE NP-HARDNESS OF THE SINGLE MACHINE COMMON DUE DATE WEIGHTED TARDINESS PROBLEM , 1992 .