Electric dipole moments and polarizabilities of single excess electron sodium fluoride clusters: Experiment and theory

In this article we present the first measurement of the electric dipole susceptibility of one excess electron NanFn–1 clusters. The static electronic polarizability and the permanent electric dipole of these clusters have been calculated with a one-electron model. Experimental values for the susceptibility are clearly related to the calculated values of the permanent dipole. The size evolution of the dipole moments is interpreted in terms of the interplay between the lattice and electron properties. This study outlines that the response of the cluster to the electric field cannot be fully understood with only equilibrium structure calculations and that the coupling between the permanent dipole and the vibrational motion of the cluster has to be taken into account

[1]  V. Kresin,et al.  A measurement of the polarizability of sodium clusters , 2001 .

[2]  M. Knickelbein Electric dipole polarizabilities of Nb2–27 , 2001 .

[3]  P. Dugourd,et al.  Beam deviation of large polar molecules in static electric fields: theory and experiment , 2001 .

[4]  J. Louderback,et al.  Absolute measurement of the optical polarizability of C60 , 2000 .

[5]  P. Dugourd,et al.  Electric dipole polarizability of one excess-electron alkali–halide cluster , 2000 .

[6]  Broyer,et al.  Polarizability of KC60: evidence for potassium skating on the C60 surface , 2000, Physical review letters.

[7]  P. Dugourd,et al.  Direct measurement of the electric polarizability of isolated C60 molecules , 1999 .

[8]  M. Sence,et al.  One-electron pseudopotential study of NanFn−1 clusters (2⩽n⩽29). II. Absorption spectra, spectral signature, and classification , 1999 .

[9]  F. Calvo,et al.  One-electron pseudopotential study of NanFn−1 clusters (2⩽n⩽29). I. Electronic and structural properties of the ground state , 1999 .

[10]  P. Dugourd,et al.  Measurement of static electric dipole polarizabilities of lithium clusters: Consistency with measured dynamic polarizabilities , 1999 .

[11]  P. Poncharal,et al.  Evidence for New Excess Electron Localization Sites in Na{sub {ital n}}F{sub {ital n}{minus}1 } Alkali-Halide Clusters , 1997 .

[12]  M. Jarrold,et al.  High-resolution ion mobility studies of sodium chloride nanocrystals , 1997 .

[13]  J. Pittner,et al.  Ab initio study of structural and optical response properties of excess-electron lithium-hydride and sodium-fluoride clusters , 1996 .

[14]  Becker,et al.  Polarizabilities of isolated semiconductor clusters. , 1996, Physical review letters.

[15]  J. Gauss,et al.  An ab initio treatment of the electronic absorption spectra of excess‐electron alkali halide clusters Nan+1Cln up to Na18Cl17 , 1995 .

[16]  M. Sence,et al.  Two‐photon ionization of alkali‐halide clusters spectroscopy of excess‐electron excited states , 1995 .

[17]  H. W. Sarkas,et al.  Photoelectron spectroscopy of color centers in negatively charged cesium iodide nanocrystals , 1995 .

[18]  C. Ochsenfeld,et al.  Excess‐electron alkali halide clusters Kn+1Cln and Lin+1Fn: A theoretical study , 1994 .

[19]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[20]  Xia,et al.  Accommodation of two excess electrons in sodium chloride cluster anions. , 1993, Physical review letters.

[21]  Honea,et al.  Electron binding and stability of excess-electron alkali halide clusters: Localization and surface states. , 1993, Physical review. B, Condensed matter.

[22]  J. Shanker,et al.  Electronic polarizabilities, potential functions, and spectroscopic constants for diatomic molecules of alkali halides and alkali hydrides , 1992 .

[23]  P. Millié,et al.  Nonperturbative method for core–valence correlation in pseudopotential calculations: Application to the Rb2 and Cs2 molecules , 1992 .

[24]  M. Kumar,et al.  Analysis of Electronic Polarizabilities in Ionic Crystals , 1991 .

[25]  J. Wolf,et al.  Vibronic structure of the Li3 ground state , 1990 .

[26]  Yang,et al.  Alkali-halide cluster ions produced by laser vaporization of solids. , 1990, Physical review. B, Condensed matter.

[27]  Honea,et al.  Optical spectra of localized excess electrons in alkali halide clusters. , 1990, Physical review letters.

[28]  Milani,et al.  Nonjellium-to-jellium transition in aluminum cluster polarizabilities. , 1989, Physical review letters.

[29]  Honea,et al.  Localization of an excess electron in sodium halide clusters. , 1989, Physical review letters.

[30]  J. Shanker,et al.  Electronic Polarizabilities and Photoelastic Behaviour of Ionic Crystals , 1986 .

[31]  Grant,et al.  Fractional quantization of molecular pseudorotation in Na3. , 1986, Physical review letters.

[32]  T. P. Martin,et al.  Model calculations for alkali halide clusters , 1985 .

[33]  K. Sattler,et al.  Electron impact studies on sodium halide microclusters , 1985 .

[34]  Scharf,et al.  Electron localization in alkali-halide clusters. , 1985, Physical review letters.

[35]  Saunders,et al.  Polarizability of alkali clusters. , 1985, Physical review. B, Condensed matter.

[36]  W. Meyer,et al.  Ground‐state properties of alkali dimers and their cations (including the elements Li, Na, and K) from ab initio calculations with effective core polarization potentials , 1984 .