Fluorescent proteins: maturation, photochemistry and photophysics.

[1]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[2]  R. Wachter,et al.  Chromogenic cross-link formation in green fluorescent protein. , 2007, Accounts of chemical research.

[3]  Robert E Campbell,et al.  Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. , 2006, The Biochemical journal.

[4]  Nathan C Shaner,et al.  Novel chromophores and buried charges control color in mFruits. , 2006, Biochemistry.

[5]  G. Orlovsky,et al.  The kindling fluorescent protein: a transient photoswitchable marker. , 2006, Physiology.

[6]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[7]  John A Tainer,et al.  Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. , 2006, Journal of the American Chemical Society.

[8]  G. Ulrich Nienhaus,et al.  Photoconvertible Fluorescent Protein EosFP: Biophysical Properties and Cell Biology Applications , 2006, Photochemistry and photobiology.

[9]  John A Tainer,et al.  Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis. , 2006, Journal of the American Chemical Society.

[10]  S. Gilroy,et al.  Using intrinsically fluorescent proteins for plant cell imaging. , 2006, The Plant journal : for cell and molecular biology.

[11]  S. Remington,et al.  Re‐engineering redox‐sensitive green fluorescent protein for improved response rate , 2006, Protein science : a publication of the Protein Society.

[12]  A. Roberts,et al.  New tools for in vivo fluorescence tagging. , 2005, Current opinion in plant biology.

[13]  J. Tainer,et al.  Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. , 2005, Biochemistry.

[14]  V. Verkhusha,et al.  Photoactivatable fluorescent proteins , 2005, Nature Reviews Molecular Cell Biology.

[15]  Christian Eggeling,et al.  Structure and mechanism of the reversible photoswitch of a fluorescent protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S. Remington,et al.  Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Hetal N. Patel,et al.  Base Catalysis of Chromophore Formation in Arg96 and Glu222 Variants of Green Fluorescent Protein* , 2005, Journal of Biological Chemistry.

[18]  R. Wachter,et al.  Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein. , 2005, Biochemical and biophysical research communications.

[19]  Peter Dedecker,et al.  Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Hetal N. Patel,et al.  Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation. , 2005, Biochemistry.

[21]  Michael Schaefer,et al.  Reversible photobleaching of enhanced green fluorescent proteins. , 2005, Biochemistry.

[22]  S. Lukyanov,et al.  Synthesis and properties of the chromophore of the asFP595 chromoprotein from Anemonia sulcata. , 2005, Biochemistry.

[23]  X. Shu,et al.  Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. , 2005, Biochemistry.

[24]  P. Matousek,et al.  Observation of excited-state proton transfer in green fluorescent protein using ultrafast vibrational spectroscopy. , 2005, Journal of the American Chemical Society.

[25]  J. Rossjohn,et al.  Variations on the GFP Chromophore , 2005, Journal of Biological Chemistry.

[26]  Konstantin A Lukyanov,et al.  zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. , 2005, Biochemistry.

[27]  R. Tsien,et al.  Evolution of new nonantibody proteins via iterative somatic hypermutation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[29]  M. Matz,et al.  Evolution of Coral Pigments Recreated , 2004, Science.

[30]  Roger Y. Tsien,et al.  Third-generation GFP biosensors for real-time readout of pH and redox potential in living cells , 2004, SPIE BiOS.

[31]  Konstantin A Lukyanov,et al.  Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. , 2004, Chemistry & biology.

[32]  S. Lukyanov,et al.  GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. , 2004, Molecular biology and evolution.

[33]  Devin Oglesbee,et al.  Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[34]  V. Verkhusha,et al.  The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins , 2004, Nature Biotechnology.

[35]  Roger Y Tsien,et al.  Genetically targeted chromophore-assisted light inactivation , 2003, Nature Biotechnology.

[36]  Mark Prescott,et al.  The 2.0-Å Crystal Structure of eqFP611, a Far Red Fluorescent Protein from the Sea Anemone Entacmaea quadricolor* , 2003, Journal of Biological Chemistry.

[37]  Ram Dixit,et al.  Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. , 2003, The Plant journal : for cell and molecular biology.

[38]  J. Tainer,et al.  Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Lukyanov,et al.  Kindling fluorescent proteins for precise in vivo photolabeling , 2003, Nature Biotechnology.

[40]  Shaoyou Chu,et al.  Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. , 2002, Biochemistry.

[41]  T. McAnaney,et al.  Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. , 2002, Biochemistry.

[42]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[43]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[45]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Zimmer,et al.  Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. , 2002, Chemical reviews.

[47]  S J Remington,et al.  Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  C. Rothmann,et al.  Green Fluorescent Protein Photobleaching: a Model for Protein Damage by Endogenous and Exogenous Singlet Oxygen , 2000, Biological chemistry.

[49]  R. Ranganathan,et al.  The structural basis for red fluorescence in the tetrameric GFP homolog DsRed , 2000, Nature Structural Biology.

[50]  R Y Tsien,et al.  Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[51]  K K Baldridge,et al.  The structure of the chromophore within DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[53]  G. Schulz,et al.  Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. , 1999, Biochemistry.

[54]  B. Reid,et al.  Chromophore formation in green fluorescent protein. , 1997, Biochemistry.

[55]  Alexander Wlodawer,et al.  The structural basis for spectral variations in green fluorescent protein , 1997, Nature Structural Biology.

[56]  S J Remington,et al.  Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Boxer,et al.  Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[59]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[60]  Konstantin A Lukyanov,et al.  A genetically encoded photosensitizer , 2006, Nature Biotechnology.

[61]  S. James Remington,et al.  Negotiating the speed bumps to fluorescence , 2002, Nature Biotechnology.

[62]  S. Remington Structural basis for understanding spectral variations in green fluorescent protein. , 2000, Methods in enzymology.