Joint VM placement and routing for data center traffic engineering

Today's data centers need efficient traffic management to improve resource utilization in their networks. In this work, we study a joint tenant (e.g., server or virtual machine) placement and routing problem to minimize traffic costs. These two complementary degrees of freedom-placement and routing-are mutually-dependent, however, are often optimized separately in today's data centers. Leveraging and expanding the technique of Markov approximation, we propose an efficient online algorithm in a dynamic environment under changing traffic loads. The algorithm requires a very small number of virtual machine migrations and is easy to implement in practice. Performance evaluation that employs the real data center traffic traces under a spectrum of elephant and mice flows, demonstrates a consistent and significant improvement over the benchmark achieved by common heuristics.

[1]  Mikkel Thorup,et al.  Internet traffic engineering by optimizing OSPF weights , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[2]  C. D. Meyer,et al.  Comparison of perturbation bounds for the stationary distribution of a Markov chain , 2001 .

[3]  HarrisTim,et al.  Xen and the art of virtualization , 2003 .

[4]  A. Y. Mitrophanov,et al.  The spectral gap and perturbation bounds for reversible continuous-time Markov chains , 2004 .

[5]  Chita R. Das,et al.  Characterizing Network Traffic in a Cluster-based, Multi-tier Data Center , 2007, 27th International Conference on Distributed Computing Systems (ICDCS '07).

[6]  Jennifer Rexford,et al.  Floodless in seattle: a scalable ethernet architecture for large enterprises , 2008, SIGCOMM '08.

[7]  Albert G. Greenberg,et al.  The cost of a cloud: research problems in data center networks , 2008, CCRV.

[8]  Amin Vahdat,et al.  A scalable, commodity data center network architecture , 2008, SIGCOMM '08.

[9]  Lei Shi,et al.  Dcell: a scalable and fault-tolerant network structure for data centers , 2008, SIGCOMM '08.

[10]  Albert G. Greenberg,et al.  The nature of data center traffic: measurements & analysis , 2009, IMC '09.

[11]  Paramvir Bahl,et al.  Flyways To De-Congest Data Center Networks , 2009, HotNets.

[12]  Amin Vahdat,et al.  PortLand: a scalable fault-tolerant layer 2 data center network fabric , 2009, SIGCOMM '09.

[13]  Haitao Wu,et al.  BCube: a high performance, server-centric network architecture for modular data centers , 2009, SIGCOMM '09.

[14]  Yoshio Turner,et al.  Ensemble routing for datacenter networks , 2010, 2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS).

[15]  Amin Vahdat,et al.  Hedera: Dynamic Flow Scheduling for Data Center Networks , 2010, NSDI.

[16]  Chita R. Das,et al.  Towards characterizing cloud backend workloads: insights from Google compute clusters , 2010, PERV.

[17]  Jose Renato Santos,et al.  Killer Fabrics for Scalable Datacenters , 2009 .

[18]  T. S. Eugene Ng,et al.  The Impact of Virtualization on Network Performance of Amazon EC2 Data Center , 2010, 2010 Proceedings IEEE INFOCOM.

[19]  Vasileios Pappas,et al.  Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement , 2010, 2010 Proceedings IEEE INFOCOM.

[20]  Archana Ganapathi,et al.  Analysis and Lessons from a Publicly Available Google Cluster Trace , 2010 .

[21]  Eric Bouillet,et al.  Efficient resource provisioning in compute clouds via VM multiplexing , 2010, ICAC '10.

[22]  Jeffrey C. Mogul,et al.  SPAIN: COTS Data-Center Ethernet for Multipathing over Arbitrary Topologies , 2010, NSDI.

[23]  Ming Zhang,et al.  Understanding data center traffic characteristics , 2010, CCRV.

[24]  VL2: a scalable and flexible data center network , 2011, Commun. ACM.

[25]  Minghua Chen,et al.  Markov Approximation for Combinatorial Network Optimization , 2013, IEEE Transactions on Information Theory.