Bipartite Quantum Interactions: Entangling and Information Processing Abilities

The aim of this thesis is to advance the theory behind quantum information processing tasks, by deriving fundamental limits on bipartite quantum interactions and dynamics, which corresponds to an underlying Hamiltonian that governs the physical transformation of a two-body open quantum system. The goal is to determine entangling abilities of such arbitrary bipartite quantum interactions. Doing so provides fundamental limitations on information processing tasks, including entanglement distillation and secret key generation, over a bipartite quantum network. We also discuss limitations on the entropy change and its rate for dynamics of an open quantum system weakly interacting with the bath. We introduce a measure of non-unitarity to characterize the deviation of a doubly stochastic quantum process from a noiseless evolution. Next, we introduce information processing tasks for secure read-out of digital information encoded in read-only memory devices against adversaries of varying capabilities. The task of reading a memory device involves the identification of an interaction process between probe system, which is in known state, and the memory device. Essentially, the information is stored in the choice of channels, which are noisy quantum processes in general and are chosen from a publicly known set. Hence, it becomes pertinent to securely read memory devices against scrutiny of an adversary. In particular, for a secure read-out task called private reading when a reader is under surveillance of a passive eavesdropper, we have determined upper bounds on its performance. We do so by leveraging the fact that private reading of digital information stored in a memory device can be understood as secret key agreement via a specific kind of bipartite quantum interaction.

[1]  Naresh Sharma,et al.  On the strong converses for the quantum channel capacity theorems , 2012, ArXiv.

[2]  Runyao Duan,et al.  Improved semidefinite programming upper bound on distillable entanglement , 2016, 1601.07940.

[3]  Eneet Kaur,et al.  Amortized entanglement of a quantum channel and approximately teleportation-simulable channels , 2017, ArXiv.

[4]  Jing Liu,et al.  Nonunital non-Markovianity of quantum dynamics , 2013, 1301.5763.

[5]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[6]  Akihito Soeda,et al.  Entanglement cost of implementing controlled-unitary operations. , 2010, Physical review letters.

[7]  C. Macchiavello,et al.  Cryptographic quantum metrology , 2017, Physical Review A.

[8]  Howard J. Carmichael,et al.  An Open Systems Approach to Quantum Optics: Lectures Presented at the Universite Libre De Bruxelles, October 28 to November 4, 1991 , 1993 .

[9]  Lindbladian operators, von Neumann entropy and energy conservation in time-dependent quantum open systems , 2016, 1601.07874.

[10]  Mark M. Wilde,et al.  Strong converse exponents for the feedback-assisted classical capacity of entanglement-breaking channels , 2015, ArXiv.

[11]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[12]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[13]  D. W. Robinson,et al.  Operator Algebras and Quantum Statistical Mechanics: Equilibrium States. Models in Quantum Statistical Mechanics , 2003 .

[14]  Runyao Duan,et al.  Perfect distinguishability of quantum operations. , 2009, Physical review letters.

[15]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[16]  D. W. Robinson,et al.  Equilibrium states models in quantum statistical mechanics , 1997 .

[17]  Mauro Paternostro,et al.  Role of environmental correlations in the non-Markovian dynamics of a spin system , 2011, 1106.5447.

[18]  M. Wolf,et al.  Distillability via protocols respecting the positivity of partial transpose. , 2001, Physical review letters.

[19]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[20]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[21]  V. Baccetti,et al.  Infinite Shannon entropy , 2012, 1212.5630.

[22]  Eneet Kaur,et al.  Extendibility limits the performance of quantum processors , 2019, Physical review letters.

[23]  Andreas J. Winter,et al.  “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.

[24]  C. Helstrom Quantum detection and estimation theory , 1969 .

[25]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[26]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[27]  W. Beckner Inequalities in Fourier analysis , 1975 .

[28]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[29]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[30]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[31]  H. Nagaoka,et al.  Strong Converse and Stein's Lemma in the Quantum Hypothesis Testing , 1999, quant-ph/9906090.

[32]  Lizhong Zheng,et al.  Fundamental Limits of Communication With Low Probability of Detection , 2015, IEEE Transactions on Information Theory.

[33]  Naresh Sharma,et al.  Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.

[34]  J. J. Sakurai,et al.  Modern Quantum Mechanics, Revised Edition , 1995 .

[35]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[36]  M. Shirokov Squashed entanglement in infinite dimensions , 2015, 1507.08964.

[37]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[39]  Giacomo Mauro D'Ariano,et al.  Programmable quantum channels and measurements , 2005 .

[40]  G. Lindblad Entropy, information and quantum measurements , 1973 .

[41]  S Bose,et al.  Communication capacity of quantum computation. , 2000, Physical review letters.

[42]  Saikat Guha,et al.  Polar coding to achieve the Holevo capacity of a pure-loss optical channel , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[43]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[44]  Nilanjana Datta,et al.  Max- Relative Entropy of Entanglement, alias Log Robustness , 2008, 0807.2536.

[45]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[46]  Koji Azuma,et al.  Versatile relative entropy bounds for quantum networks , 2017, 1707.05543.

[47]  Xin Wang,et al.  Semidefinite Programming Converse Bounds for Quantum Communication , 2017, IEEE Transactions on Information Theory.

[48]  Todd A. Brun,et al.  Quantum steganography , 2010, Digital Media Steganography.

[49]  R. Konig,et al.  The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.

[50]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[51]  U. Weiss Quantum Dissipative Systems , 1993 .

[52]  Seth Lloyd,et al.  Explicit capacity-achieving receivers for optical communication and quantum reading , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[53]  Runyao Duan,et al.  A semidefinite programming upper bound of quantum capacity , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[54]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[55]  Debbie W. Leung,et al.  Reversible simulation of bipartite product Hamiltonians , 2003, IEEE Transactions on Information Theory.

[56]  M. Christandl,et al.  Relative Entropy Bounds on Quantum, Private and Repeater Capacities , 2016, Communications in Mathematical Physics.

[57]  Jeffrey H. Shapiro,et al.  Defeating Active Eavesdropping with Quantum Illumination , 2009, 0904.2490.

[58]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[59]  Prabha Mandayam,et al.  Impact of local dynamics on entangling power , 2017 .

[60]  Serge Fehr,et al.  On quantum Renyi entropies: a new definition and some properties , 2013, ArXiv.

[61]  Claude E. Shannon,et al.  Two-way Communication Channels , 1961 .

[62]  W. Gerlāch,et al.  Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld , 1922 .

[63]  L. Susskind,et al.  Fast Scram blers , 2008, 0808.2096.

[64]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[65]  Jeffrey H. Shapiro,et al.  Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates , 2015, 1510.08737.

[66]  Mark M. Wilde,et al.  Strong converse rates for quantum communication , 2015, ISIT.

[67]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[68]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[69]  Giulio Chiribella,et al.  Realization schemes for quantum instruments in finite dimensions , 2008, 0810.3211.

[70]  Anthony Chefles Unambiguous discrimination between linearly dependent states with multiple copies , 2001, quant-ph/0105016.

[71]  George Siopsis,et al.  Continuous-variable quantum Gaussian process regression and quantum singular value decomposition of nonsparse low-rank matrices , 2017, 1707.00360.

[72]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[73]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[74]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[75]  Mark M. Wilde,et al.  Quantum Reading Capacity: General Definition and Bounds , 2017, IEEE Transactions on Information Theory.

[76]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[77]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[78]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[79]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[80]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[81]  E. Davies,et al.  Markovian master equations , 1974 .

[82]  Noah Linden,et al.  Nonlocal content of quantum operations , 2001 .

[83]  A. Winter,et al.  “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.

[84]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[85]  Fred Garnett,et al.  Colloquium , 2008, Br. J. Educ. Technol..

[86]  James L. Park The concept of transition in quantum mechanics , 1970 .

[87]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[88]  Nilanjana Datta,et al.  Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.

[89]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[90]  K. Audenaert,et al.  Continuity bounds on the quantum relative entropy -- II , 2005, 1105.2656.

[91]  Stefano Pirandola,et al.  Quantum Reading of a Classical Digital Memory , 2011, Physical review letters.

[92]  Graeme Smith,et al.  Limits on classical communication from quantum entropy power inequalities , 2012, Nature Photonics.

[93]  Raymond Laflamme,et al.  Interpretation of tomography and spectroscopy as dual forms of quantum computation , 2002, Nature.

[94]  W. Rudin Principles of mathematical analysis , 1964 .

[95]  P. Zanardi,et al.  Entangling power of quantum evolutions , 2000, quant-ph/0005031.

[96]  Gian Paolo Beretta,et al.  Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy production and other nonunitary processes , 2009, 0907.1977.

[97]  Mark M. Wilde,et al.  Approximate reversibility in the context of entropy gain, information gain, and complete positivity , 2016, 1601.01207.

[98]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[99]  Yaoyun Shi,et al.  Randomness in nonlocal games between mistrustful players , 2017, Quantum Inf. Comput..

[100]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[101]  H. Narnhofer,et al.  Entropy behaviour under completely positive maps , 1988 .

[102]  H. Briegel,et al.  Quantum simulation of interacting high-dimensional systems: The influence of noise , 2007, 0706.0154.

[103]  Masterarbeit von Alexander Müller-Hermes Transposition in Quantum Information Theory , 2012 .

[104]  E. Lieb,et al.  Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .

[105]  Ronald de Wolf,et al.  Private Quantum Channels and the Cost of Randomizing Quantum Information , 2000 .

[106]  Li Li,et al.  Canonical form of master equations and characterization of non-Markovianity , 2010, 1009.0845.

[107]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[108]  Mario Berta,et al.  Amortization does not enhance the max-Rains information of a quantum channel , 2017, ArXiv.

[109]  O. Stern,et al.  Der experimentelle Nachweis des magnetischen Moments des Silberatoms , 1922 .

[110]  'Alvaro M. Alhambra,et al.  Dynamical maps, quantum detailed balance, and the Petz recovery map , 2016, 1609.07496.

[111]  S. Haseli,et al.  A measure of non-Markovianity for unital quantum dynamical maps , 2014, Quantum Inf. Process..

[112]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[113]  Mark M. Wilde,et al.  Strong Converse for the Feedback-Assisted Classical Capacity of Entanglement-Breaking Channels , 2015, Probl. Inf. Transm..

[114]  Saikat Guha,et al.  The Squashed Entanglement of a Quantum Channel , 2013, IEEE Transactions on Information Theory.

[115]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[116]  Tom Cooney Mil Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication , 2014 .

[117]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[118]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[119]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[120]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[121]  Mark M. Wilde,et al.  Entanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices , 2017, Physical Review A.

[122]  Andrzej Kossakowski,et al.  Markovianity criteria for quantum evolution , 2012, 1201.5987.

[123]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[124]  Saikat Guha,et al.  Information Capacity of Quantum Reading , 2011 .

[125]  M. Wilde,et al.  Optimal estimation and discrimination of excess noise in thermal and amplifier channels , 2016, 1611.09165.

[126]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[127]  Mingsheng Ying,et al.  Unambiguous discrimination among quantum operations , 2006 .

[128]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[129]  Sergey Bravyi,et al.  Upper bounds on entangling rates of bipartite Hamiltonians , 2007, 0704.0964.

[130]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[131]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[132]  R. Bousso The Holographic principle , 2002, hep-th/0203101.

[133]  Runyao Duan,et al.  Entanglement is not necessary for perfect discrimination between unitary operations. , 2007, Physical review letters.

[134]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[135]  Yuan Feng,et al.  Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.

[136]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[137]  Nicolas Léonard Sadi Carnot,et al.  Reflections on the Motive Power of Fire , 1824 .

[138]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[139]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[140]  Matthieu R. Bloch,et al.  Covert Communication Over Noisy Channels: A Resolvability Perspective , 2015, IEEE Transactions on Information Theory.

[141]  D. Home,et al.  Unification of Bell, Leggett-Garg and Kochen-Specker inequalities: Hybrid spatio-temporal inequalities , 2013, 1308.0270.

[142]  Jyrki Piilo,et al.  Measure for the non-Markovianity of quantum processes , 2010, 1002.2583.

[143]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[144]  Jacques Payen,et al.  Reflections on the Motive Power of Fire by Sadi Carnot, and other Papers on the Second Law of Thermodynamics, by E. Clapeyron and R. Clausius, edited with an Introduction by E. Mendoza , 1971 .

[145]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[146]  B. Moor,et al.  Asymptotic relative entropy of entanglement for orthogonally invariant states , 2002, quant-ph/0204143.

[147]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[148]  H. Falk Inequalities of J. W. Gibbs , 1970 .

[149]  H. Umegaki Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .

[150]  Mark M. Wilde,et al.  Fundamental limits on quantum dynamics based on entropy change , 2017, 1707.06584.

[151]  S. Lloyd,et al.  Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results , 2010, 1004.4787.

[152]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[153]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[154]  Mark M. Wilde,et al.  Squashed entanglement and approximate private states , 2016, Quantum Inf. Process..

[155]  E. Carlen TRACE INEQUALITIES AND QUANTUM ENTROPY: An introductory course , 2009 .

[156]  Pranab Sen,et al.  Classical Communication Over a Quantum Interference Channel , 2011, IEEE Transactions on Information Theory.

[157]  D. Dieks Communication by EPR devices , 1982 .

[158]  Lorenzo Maccone,et al.  Using entanglement against noise in quantum metrology. , 2014, Physical review letters.

[159]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[160]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[161]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[162]  Mark M. Wilde,et al.  Fundamental limits on the capacities of bipartite quantum interactions , 2018, Physical review letters.

[163]  P. Bergmann Stochasticity And Partial Order Doubly Stochastic Maps And Unitary Mixing , 2016 .

[164]  Robert R. Tucci Quantum Entanglement and Conditional Information Transmission , 1999 .

[165]  Robert R.Tucci Entanglement of Distillation and Conditional Mutual Information , 2002 .

[166]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[167]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[168]  Marco Tomamichel,et al.  Quantum Information Processing with Finite Resources - Mathematical Foundations , 2015, ArXiv.

[169]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[170]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[171]  J. Cirac,et al.  Entangling operations and their implementation using a small amount of entanglement. , 2000, Physical review letters.

[172]  Michal Horodecki,et al.  General Paradigm for Distilling Classical Key From Quantum States , 2009, IEEE Transactions on Information Theory.

[173]  E. Lieb,et al.  A Fundamental Property of Quantum-Mechanical Entropy , 1973 .

[174]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[175]  Diego A. Wisniacki,et al.  Measuring and using non-Markovianity , 2015, 1505.03503.

[176]  Debbie W. Leung,et al.  TWO-WAY QUANTUM COMMUNICATION CHANNELS , 2006 .

[177]  Debbie W. Leung,et al.  On the capacities of bipartite Hamiltonians and unitary gates , 2002, IEEE Trans. Inf. Theory.

[178]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[179]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[180]  Robert Mario Fano Fano inequality , 2008, Scholarpedia.

[181]  Samuel L. Braunstein,et al.  Quantum Reading Capacity , 2012 .

[182]  F. Hiai,et al.  Sufficiency, KMS condition and relative entropy in von Neumann algebras. , 1981 .

[183]  I. Hirschman,et al.  A Note on Entropy , 1957 .

[184]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[185]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[186]  Akio Fujiwara,et al.  Estimation of a generalized amplitude-damping channel , 2004 .

[187]  Phil Attard,et al.  Non-equilibrium Thermodynamics and Statistical Mechanics: Foundations and Applications , 2012 .

[188]  R. F. Streater Convergence of the quantum Boltzmann map , 1985 .

[189]  Lin Chen,et al.  Entangling and assisted entangling power of bipartite unitary operations , 2016, 1604.05788.

[190]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[191]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[192]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[193]  Stefano Pirandola,et al.  Super-additivity and entanglement assistance in quantum reading , 2016, Quantum Inf. Comput..

[194]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[195]  Andris Ambainis,et al.  Private quantum channels , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[196]  Lord Bowden,et al.  The story of IFF (Identification Friend or Foe) , 1985 .

[197]  Akihito Soeda,et al.  A Coding Theorem for Bipartite Unitaries in Distributed Quantum Computation , 2017, IEEE Transactions on Information Theory.

[198]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[199]  E. Rains Bound on distillable entanglement , 1998, quant-ph/9809082.

[200]  Pranab Sen,et al.  Invertible quantum operations and perfect encryption of quantum states , 2006, Quantum Inf. Comput..

[201]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[202]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[203]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[204]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[205]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[206]  Mark M. Wilde,et al.  Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.

[207]  D. Home,et al.  Multipartite Bell-type inequality by generalizing Wigner's argument , 2014, 1410.7936.

[208]  D. Chruściński,et al.  Degree of non-Markovianity of quantum evolution. , 2013, Physical review letters.

[209]  D. Reeb,et al.  Monotonicity of the Quantum Relative Entropy Under Positive Maps , 2015, 1512.06117.

[210]  TOBIAS FRITZ,et al.  Resource convertibility and ordered commutative monoids , 2015, Mathematical Structures in Computer Science.

[211]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[212]  M. Paternostro,et al.  Geometrical characterization of non-Markovianity , 2013, 1302.6673.

[213]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[214]  O. Hölder Ueber einen Mittelwerthabsatz , 1889 .

[215]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[216]  H. Vincent Poor,et al.  Feedback in the Non-Asymptotic Regime , 2011, IEEE Transactions on Information Theory.

[217]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000 .

[218]  Cheng Guo,et al.  Parallel distinguishability of quantum operations , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[219]  J. Maldacena,et al.  The black hole final state , 2003, hep-th/0310281.

[220]  Maris Ozols,et al.  Entropy power inequalities for qudits , 2015, ArXiv.

[221]  Debbie W. Leung,et al.  Adaptive versus nonadaptive strategies for quantum channel discrimination , 2009, 0909.0256.

[222]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[223]  M. Horodecki,et al.  Dynamics of quantum entanglement , 2000, quant-ph/0008115.

[224]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[225]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[226]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[227]  Dawei Ding,et al.  Conditional mutual information of bipartite unitaries and scrambling , 2016, Journal of High Energy Physics.

[228]  Andreas J. Winter,et al.  Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints , 2015, ArXiv.

[229]  J. Bekenstein Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.

[230]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[231]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[232]  W. Stinespring Positive functions on *-algebras , 1955 .

[233]  Guillaume Aubrun On Almost Randomizing Channels with a Short Kraus Decomposition , 2008, 0805.2900.

[234]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[235]  A. Holevo Remarks on the classical capacity of quantum channel , 2002, quant-ph/0212025.

[236]  Giulio Chiribella,et al.  Secret quantum communication of a reference frame. , 2007, Physical review letters.

[237]  Franco Nori,et al.  Fisher information under decoherence in Bloch representation , 2012, 1212.0917.

[238]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[239]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[240]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[241]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[242]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[243]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[244]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[245]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[246]  Mario Berta,et al.  Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.

[247]  Salman Beigi,et al.  Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.

[248]  Alán Aspuru-Guzik,et al.  Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers. , 2011, The Journal of chemical physics.

[249]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[250]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[251]  Michael M. Wolf,et al.  Entropy Production of Doubly Stochastic Quantum Channels , 2015 .

[252]  K. Audenaert,et al.  Continuity bounds on the quantum relative entropy , 2005, quant-ph/0503218.

[253]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[254]  A. Acín Statistical distinguishability between unitary operations. , 2001, Physical review letters.

[255]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[256]  John A Smolin,et al.  Entangling and disentangling power of unitary transformations are not equal. , 2009, Physical review letters.

[257]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[258]  S. Hawking Breakdown of Predictability in Gravitational Collapse , 1976 .

[259]  N. Datta,et al.  Contractivity properties of a quantum diffusion semigroup , 2016, 1607.04242.

[260]  A. Winter,et al.  Resource theory of coherence: Beyond states , 2017, 1704.03710.

[261]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[262]  Teiko Heinosaari,et al.  The semigroup structure of Gaussian channels , 2009, 0909.0408.

[263]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[264]  Samuel L. Braunstein,et al.  Criteria for continuous-variable quantum teleportation , 1999, quant-ph/9910030.

[265]  Saikat Guha,et al.  Quantum-secure covert communication on bosonic channels , 2015, Nature Communications.

[266]  M. S. Leifer,et al.  Optimal entanglement generation from quantum operations , 2003 .