Virtual Reference Feedback Tuning for position control of a twin rotor aerodynamic system

This paper presents a positioning control application of the Virtual Reference Feedback Tuning (VRFT) technique for linear feedback controllers of a Multi Input-Multi Output (MIMO) twin rotor aerodynamic system (TRAS). The VRFT technique is useful because it finds the parameters of linear feedback controllers without using the process model. The identified controller is validated both by a regression test for selecting the optimal number of parameters and by a whitening test on the prediction error. A set of experimental results for the pitch and azimuth MIMO control systems using both Singe Input-Single Output (SISO) controllers and MIMO ones demonstrate the VRFT theory. A comparison of several MIMO controllers' performance is given.

[1]  Michel Gevers,et al.  Correlation-based tuning of decoupling multivariable controllers , 2007, Autom..

[2]  Cédric Join,et al.  Model-free control , 2013, Int. J. Control.

[3]  Radu-Emil Precup,et al.  Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning (VRFT): a new direct approach to the design of feedback controllers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[5]  Sergio M. Savaresi,et al.  Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach , 2004, IEEE Transactions on Control Systems Technology.

[6]  Ulf Jeppsson,et al.  Application of multivariate virtual reference feedback tuning for wastewater treatment plant control , 2012 .

[7]  I. D. Landau,et al.  Digital Control Systems: Design, Identification and Implementation , 2006 .

[8]  Pedro Albertos,et al.  Neural networks in virtual reference tuning , 2011, Eng. Appl. Artif. Intell..

[9]  Michael G. Safonov,et al.  The unfalsified control concept and learning , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[10]  Claudia-Adina Dragos,et al.  Data-Driven Reference Trajectory Tracking Algorithm and Experimental Validation , 2013, IEEE Transactions on Industrial Informatics.

[11]  Shangtai Jin,et al.  Data-Driven Model-Free Adaptive Control for a Class of MIMO Nonlinear Discrete-Time Systems , 2011, IEEE Transactions on Neural Networks.

[12]  Tassiano Neuhaus,et al.  Tuning Nonlinear Controllers with the Virtual Reference Approach , 2014 .

[13]  A. Karimi,et al.  Data‐driven model reference control with asymptotically guaranteed stability , 2011 .

[14]  Sergio M. Savaresi,et al.  Direct nonlinear control design: the virtual reference feedback tuning (VRFT) approach , 2006, IEEE Transactions on Automatic Control.

[15]  Pengfei Yan,et al.  Data-driven controller design for general MIMO nonlinear systems via virtual reference feedback tuning and neural networks , 2016, Neurocomputing.

[16]  Radu-Emil Precup,et al.  Two data-driven control algorithms for a MIMO aerodynamic system with experimental validation , 2015, 2015 19th International Conference on System Theory, Control and Computing (ICSTCC).

[17]  Diego Eckhard,et al.  Virtual Reference Feedback Tuning for non minimum phase plants , 2009, 2009 European Control Conference (ECC).

[18]  M. Nakamoto An application of the virtual reference feedback tuning for an MIMO process , 2004, SICE 2004 Annual Conference.

[19]  Sergio M. Savaresi,et al.  Non-iterative direct data-driven controller tuning for multivariable systems: theory and application , 2012 .

[20]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..

[21]  J. Spall,et al.  Model-free control of nonlinear stochastic systems with discrete-time measurements , 1998, IEEE Trans. Autom. Control..

[22]  H. Akaike A new look at the statistical model identification , 1974 .

[23]  Håkan Hjalmarsson,et al.  Iterative feedback tuning—an overview , 2002 .

[24]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .