FBK HLT-MT at SemEval-2016 Task 1: Cross-lingual Semantic Similarity Measurement Using Quality Estimation Features and Compositional Bilingual Word Embeddings

This paper describes the system by FBK HLTMT for cross-lingual semantic textual similarity measurement. Our approach is based on supervised regression with an ensemble decision tree. In order to assign a semantic similarity score to an input sentence pair, the model combines features collected by state-of-the-art methods in machine translation quality estimation and distance metrics between crosslingual embeddings of the two sentences. In our analysis, we compare different techniques for composing sentence vectors, several distance features and ways to produce training data. The proposed system achieves a mean Pearson’s correlation of 0.39533, ranking 7 among all participants in the cross-lingual STS task organized within the SemEval 2016 evaluation campaign.

[1]  José Guilherme Camargo de Souza,et al.  Machine Translation Quality Estimation Across Domains , 2014, COLING.

[2]  Treebank Penn,et al.  Linguistic Data Consortium , 1999 .

[3]  Steven Bethard,et al.  DLS@CU: Sentence Similarity from Word Alignment and Semantic Vector Composition , 2015, *SEMEVAL.

[4]  Eneko Agirre,et al.  SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity , 2012, *SEMEVAL.

[5]  Robert Dale,et al.  United Nations General Assembly Resolutions : a six-language parallel corpus , 2009 .

[6]  José Guilherme Camargo de Souza,et al.  Adaptive Quality Estimation for Machine Translation , 2014, ACL.

[7]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[8]  Matteo Negri,et al.  FBK-UPV-UEdin participation in the WMT14 Quality Estimation shared-task , 2014, WMT@ACL.

[9]  Eneko Agirre,et al.  *SEM 2013 shared task: Semantic Textual Similarity , 2013, *SEMEVAL.

[10]  Lucia Specia,et al.  QuEst - A translation quality estimation framework , 2013, ACL.

[11]  A. Kilgarriff *SEM 2012: The First Joint Conference on Lexical and Computational Semantics , 2012 .

[12]  Claire Cardie,et al.  SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot on Interpretability , 2015, *SEMEVAL.

[13]  Christopher D. Manning,et al.  Bilingual Word Representations with Monolingual Quality in Mind , 2015, VS@HLT-NAACL.

[14]  Elisa Ricci,et al.  Online Multitask Learning for Machine Translation Quality Estimation , 2015, ACL.

[15]  Quoc V. Le,et al.  Exploiting Similarities among Languages for Machine Translation , 2013, ArXiv.

[16]  Claire Cardie,et al.  SemEval-2014 Task 10: Multilingual Semantic Textual Similarity , 2014, *SEMEVAL.

[17]  Timothy Baldwin,et al.  langid.py: An Off-the-shelf Language Identification Tool , 2012, ACL.

[18]  Ivan Titov,et al.  Inducing Crosslingual Distributed Representations of Words , 2012, COLING.

[19]  Philipp Koehn,et al.  Findings of the 2012 Workshop on Statistical Machine Translation , 2012, WMT@NAACL-HLT.

[20]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[21]  Marcello Federico,et al.  Match without a Referee: Evaluating MT Adequacy without Reference Translations , 2012, WMT@NAACL-HLT.

[22]  Christian Hänig,et al.  ExB Themis: Extensive Feature Extraction from Word Alignments for Semantic Textual Similarity , 2015, *SEMEVAL.

[23]  Philipp Koehn,et al.  Europarl: A Parallel Corpus for Statistical Machine Translation , 2005, MTSUMMIT.

[24]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[25]  Kevin Gimpel,et al.  Towards Universal Paraphrastic Sentence Embeddings , 2015, ICLR.

[26]  Mirella Lapata,et al.  A Comparison of Vector-based Representations for Semantic Composition , 2012, EMNLP.

[27]  Philipp Koehn,et al.  The MateCat Tool , 2014, COLING.