General Framework for Randomized Benchmarking

1 QuSoft & Korteweg-de Vries Institute, University of Amsterdam, Science Park, Amsterdam 123 1098 XG, Netherlands 2 Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, UAE 3 Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Arnimallee 14 14195, Germany 4 Department of Computer Science, University College London, 66-72 Gower Street, London WC1E 6EA, United Kingdom 5 Department of Mathematical Sciences, University of Copenhagen, København 2100, Denmark 6 NBIA, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, København 2100, Denmark 7 Mathematics and Computer Science, Freie Universität Berlin, Takustraße 9, Berlin 14195, Germany 8 Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany

[1]  F. Brandão,et al.  Random Quantum Circuits Transform Local Noise into Global White Noise , 2021, Communications in Mathematical Physics.

[2]  J. Eisert,et al.  Shadow estimation of gate-set properties from random sequences , 2021, Nature communications.

[3]  Liang Jiang,et al.  Benchmarking near-term quantum computers via random circuit sampling , 2021, 2105.05232.

[4]  M. Walter,et al.  Matchgate benchmarking: Scalable benchmarking of a continuous family of many-qubit gates , 2020, Quantum.

[5]  Ingo Roth,et al.  Theory of Quantum System Certification , 2020, PRX Quantum.

[6]  Bill Fefferman,et al.  Efficient classical simulation of noisy random quantum circuits in one dimension , 2020, Quantum.

[7]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[8]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[9]  J. Eisert,et al.  Quantum certification and benchmarking , 2019, Nature Reviews Physics.

[10]  Steven T. Flammia,et al.  Efficient Estimation of Pauli Channels , 2019, ACM Transactions on Quantum Computing.

[11]  Steven T. Flammia,et al.  Efficient learning of quantum noise , 2019, Nature Physics.

[12]  Byonghyo Shim,et al.  Low-Rank Matrix Completion: A Contemporary Survey , 2019, IEEE Access.

[13]  Wenjing Liao,et al.  Super-Resolution Limit of the ESPRIT Algorithm , 2019, IEEE Transactions on Information Theory.

[14]  Matthew Alexander,et al.  A polar decomposition for quantum channels (with applications to bounding error propagation in quantum circuits) , 2019, Quantum.

[15]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[16]  Steven T. Flammia,et al.  Statistical analysis of randomized benchmarking , 2019, Physical Review A.

[17]  A. H. Werner,et al.  Randomized Benchmarking for Individual Quantum Gates. , 2018, Physical review letters.

[18]  Arnaud Carignan-Dugas,et al.  Randomized benchmarking under different gate sets , 2018, Physical Review A.

[19]  U. Vazirani,et al.  On the complexity and verification of quantum random circuit sampling , 2018, Nature Physics.

[20]  Jonas Helsen,et al.  Efficient unitarity randomized benchmarking of few-qubit Clifford gates , 2018, Physical Review A.

[21]  Robin Blume-Kohout,et al.  Direct Randomized Benchmarking for Multiqubit Devices. , 2018, Physical review letters.

[22]  Jonas Helsen,et al.  A new class of efficient randomized benchmarking protocols , 2018, npj Quantum Information.

[23]  Bryan H. Fong,et al.  Randomized Benchmarking as Convolution: Fourier Analysis of Gate Dependent Errors , 2018, Quantum.

[24]  Arnaud Carignan-Dugas,et al.  From randomized benchmarking experiments to gate-set circuit fidelity: how to interpret randomized benchmarking decay parameters , 2018, New Journal of Physics.

[25]  Daniel Stilck Francca,et al.  Approximate randomized benchmarking for finite groups , 2018, Journal of Physics A: Mathematical and Theoretical.

[26]  Jens Eisert,et al.  Recovering quantum gates from few average gate fidelities , 2018, Physical review letters.

[27]  Joel J. Wallman,et al.  Real Randomized Benchmarking , 2018, Quantum.

[28]  Bryan Eastin,et al.  Randomized benchmarking with restricted gate sets , 2018, Physical Review A.

[29]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[30]  Weilin Li,et al.  Stable super-resolution limit and smallest singular value of restricted Fourier matrices , 2017, Applied and Computational Harmonic Analysis.

[31]  J. Gambetta,et al.  Quantification and characterization of leakage errors , 2017, 1704.03081.

[32]  Bryan H. Fong,et al.  Randomized Benchmarking, Correlated Noise, and Ising Models , 2017, 1703.09747.

[33]  S. Flammia,et al.  Logical Randomized Benchmarking , 2017, 1702.03688.

[34]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[35]  Jonas Helsen,et al.  Multiqubit randomized benchmarking using few samples , 2017, Physical Review A.

[36]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[37]  Jongwon Kim,et al.  Weingarten calculus and the IntHaar package for integrals over compact matrix groups , 2016, J. Symb. Comput..

[38]  Arnaud Carignan-Dugas,et al.  Bounding the average gate fidelity of composite channels using the unitarity , 2016, New Journal of Physics.

[39]  Steven T. Flammia,et al.  Estimating the fidelity of T gates using standard interleaved randomized benchmarking , 2016, 1608.02943.

[40]  Albert Fannjiang,et al.  Compressive Spectral Estimation with Single-Snapshot ESPRIT: Stability and Resolution , 2016, ArXiv.

[41]  Christiane P. Koch,et al.  Hybrid benchmarking of arbitrary quantum gates , 2016, 1606.03927.

[42]  Rafael N. Alexander,et al.  Randomized benchmarking in measurement-based quantum computing , 2016, 1605.08053.

[43]  Joseph Emerson,et al.  Robust characterization of leakage errors , 2016 .

[44]  W. T. Gowers,et al.  Inverse and stability theorems for approximate representations of finite groups , 2015, 1510.04085.

[45]  Huangjun Zhu Multiqubit Clifford groups are unitary 3-designs , 2015, 1510.02619.

[46]  Zak Webb,et al.  The Clifford group forms a unitary 3-design , 2015, Quantum Inf. Comput..

[47]  Andrew W. Cross,et al.  Scalable randomised benchmarking of non-Clifford gates , 2015, npj Quantum Information.

[48]  Arnaud Carignan-Dugas,et al.  Characterizing universal gate sets via dihedral benchmarking , 2015, 1508.06312.

[49]  Joel J. Wallman,et al.  Robust Characterization of Loss Rates. , 2015, Physical review letters.

[50]  F. K. Wilhelm,et al.  Complete randomized benchmarking protocol accounting for leakage errors , 2015, 1505.00580.

[51]  Sarah Sheldon,et al.  Characterizing errors on qubit operations via iterative randomized benchmarking , 2015, 1504.06597.

[52]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[53]  M. Veldhorst,et al.  Nonexponential fidelity decay in randomized benchmarking with low-frequency noise , 2015, 1502.05119.

[54]  John M. Martinis,et al.  Rolling quantum dice with a superconducting qubit , 2014, 1406.3364.

[55]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[56]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[57]  Andrew W. Cross,et al.  Investigating the limits of randomized benchmarking protocols , 2013, 1308.2928.

[58]  Shelby Kimmel,et al.  Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.

[59]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[60]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[61]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[62]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[63]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[64]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[65]  Robin Blume-Kohout,et al.  Gate fidelity fluctuations and quantum process invariants , 2009, 0910.1315.

[66]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[67]  R. Laflamme,et al.  Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing , 2008, 0808.3973.

[68]  Roland Badeau,et al.  Performance of ESPRIT for Estimating Mixtures of Complex Exponentials Modulated by Polynomials , 2007, IEEE Transactions on Signal Processing.

[69]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[70]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[71]  J. Emerson,et al.  Efficient error characterization in quantum information processing , 2006, quant-ph/0608246.

[72]  Roland Badeau,et al.  High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials , 2006, IEEE Transactions on Signal Processing.

[73]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[74]  S. Szarek,et al.  An analysis of completely positive trace-preserving maps on M2 , 2002 .

[75]  A. Winter,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[76]  Fermín S. Viloche Bazán,et al.  Conditioning of Rectangular Vandermonde Matrices with Nodes in the Unit Disk , 1999, SIAM J. Matrix Anal. Appl..

[77]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[78]  D. J. Hartfiel,et al.  Dense sets of diagonalizable matrices , 1995 .

[79]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[80]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[81]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[82]  Tosio Kato Perturbation theory for linear operators , 1966 .

[83]  I. Miyazaki,et al.  AND T , 2022 .