Unified model-based fault diagnosis for three industrial application studies

This paper proposes a unified scheme for fault detection and isolation (FDI) that integrates model-based and multivariate statistical methods. For creating suitable models, subspace model identification is utilized together with state-observers to track the measured process operation. To describe and analyze the impact of fault conditions, the scheme utilizes input reconstruction and unknown input estimation to generate multivariate residual-based statistics. In contrast to existing work, the paper presents three industrial application studies involving sensor faults, as well as process and actuator faults which result from measured and unmeasured disturbances.

[1]  Steven X. Ding,et al.  Model-based fault diagnosis in technical processes , 2000 .

[2]  Theodora Kourti,et al.  Multivariate SPC Methods for Process and Product Monitoring , 1996 .

[3]  Yi Xiong,et al.  Unknown disturbance inputs estimation based on a state functional observer design , 2003, Autom..

[4]  John F. MacGregor,et al.  Modeling of dynamic systems using latent variable and subspace methods , 2000 .

[5]  S. Ding,et al.  Sensor fault reconstruction and sensor compensation for a class of nonlinear state-space systems via a descriptor system approach , 2007 .

[6]  Peter Fogh Odgaard,et al.  Observer-based fault detection and moisture estimating in coal mills , 2008 .

[7]  S. Żak,et al.  Observer design for systems with unknown inputs , 2005 .

[8]  Nola D. Tracy,et al.  Multivariate Control Charts for Individual Observations , 1992 .

[9]  Rolf Isermann,et al.  Fault-diagnosis systems : an introduction from fault detection to fault tolerance , 2006 .

[10]  Silvio Simani,et al.  Model-based fault diagnosis in dynamic systems using identification techniques , 2003 .

[11]  Lei Xie,et al.  Statistical Monitoring of Dynamic Multivariate Processes - Part 1. Modeling Autocorrelation and Cross-correlation , 2006 .

[12]  Darci Odloak,et al.  Observer-based fault diagnosis in chemical plants , 2005 .

[13]  Christopher Edwards,et al.  Sliding mode observers for reconstruction of simultaneous actuator and sensor faults , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[14]  Christopher Edwards A comparison of sliding mode and unknown input observers for fault reconstruction , 2004 .

[15]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[16]  Ping Zhang,et al.  Subspace method aided data-driven design of fault detection and isolation systems , 2009 .

[17]  Orest Iftime,et al.  Proceedings of the 16th IFAC World congress , 2006 .

[18]  Florian Forner Anfahren von Reaktivrektifikationsprozessen in Kolonnen mit unterschiedlichen Einbauten , 2008 .

[19]  Seongkyu Yoon,et al.  Statistical and causal model‐based approaches to fault detection and isolation , 2000 .

[20]  Shao-Kung Chang,et al.  Design of general structured observers for linear systems with unknown inputs , 1997 .

[21]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[22]  P. S. Buckley,et al.  Design of Distillation Column Control Systems , 1985 .

[23]  Yi Xiong,et al.  Robust fault detection and isolation via a diagnostic observer , 2000 .

[24]  Henner Schmidt-Traub,et al.  Integrated reaction and separation operations : modelling and experimental validation , 2006 .

[25]  Jin Cao,et al.  PCA-based fault diagnosis in the presence of control and dynamics , 2004 .

[26]  Sebastian Engell,et al.  Controlling reactive distillation , 2006 .

[27]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[28]  Maria Gabriella Xibilia,et al.  FUZZY ACTIVATED NEURAL MODELS FOR PRODUCT QUALITY MONITORING IN REFINERIES , 2005 .

[29]  Sigurd Skogestad,et al.  The Dos and Don’ts of Distillation Column Control , 2007 .

[30]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[31]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part III: Process history based methods , 2003, Comput. Chem. Eng..

[32]  Vicenç Puig,et al.  Passive Robust Fault Detection Using Non-Linear Interval Observers: Application to the DAMADICS Benchmark Problem , 2003 .

[33]  Uwe Kruger,et al.  Improved principal component monitoring using the local approach , 2007, Autom..

[34]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[35]  Peter C. Müller,et al.  Nonlinearity estimation and compensation by linear observers: theory and applications , 2000 .

[36]  Steven X. Ding,et al.  State and Disturbance Estimator for Time-Delay Systems With Application to Fault Estimation and Signal Compensation , 2007, IEEE Transactions on Signal Processing.

[37]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[38]  B. Moor,et al.  Subspace state space system identification for industrial processes , 1998 .

[39]  Jingang Yi,et al.  A new algorithm for simultaneous input and state estimation , 2008, 2008 American Control Conference.

[40]  Mehrdad Saif,et al.  A new approach to robust fault detection and identification , 1993 .

[41]  George W. Irwin,et al.  Improved reliability in diagnosing faults using multivariate statistics , 2006, Comput. Chem. Eng..

[42]  Seongkyu Yoon,et al.  Fault diagnosis with multivariate statistical models part I: using steady state fault signatures , 2001 .

[43]  Si-Zhao Joe Qin,et al.  Reconstruction-based contribution for process monitoring , 2009, Autom..

[44]  George W. Irwin,et al.  Improved fault diagnosis in multivariate systems using regression-based reconstruction , 2009 .

[45]  Sebastian Engell,et al.  Systematischer Reglerentwurf für eine semikontinuierliche Reaktivrektifikation , 2002 .