Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system

[1] River discharge predictions often show errors that degrade the quality of forecasts. Three different methods of error correction are compared, namely, an autoregressive model with and without exogenous input (ARX and AR, respectively), and a method based on wavelet transforms. For the wavelet method, a Vector-Autoregressive model with exogenous input (VARX) is simultaneously fitted for the different levels of wavelet decomposition; after predicting the next time steps for each scale, a reconstruction formula is applied to transform the predictions in the wavelet domain back to the original time domain. The error correction methods are combined with the Hydrological Uncertainty Processor (HUP) in order to estimate the predictive conditional distribution. For three stations along the Danube catchment, and using output from the European Flood Alert System (EFAS), we demonstrate that the method based on wavelets outperforms simpler methods and uncorrected predictions with respect to mean absolute error, Nash-Sutcliffe efficiency coefficient (and its decomposed performance criteria), informativeness score, and in particular forecast reliability. The wavelet approach efficiently accounts for forecast errors with scale properties of unknown source and statistical structure.

[1]  Leonard J. Tashman,et al.  Out-of-sample tests of forecasting accuracy: an analysis and review , 2000 .

[2]  Ezio Todini,et al.  A model conditional processor to assess predictive uncertainty in flood forecasting , 2008 .

[3]  Radomir S. Stankovic,et al.  The Haar wavelet transform: its status and achievements , 2003, Comput. Electr. Eng..

[4]  R. K. Kachroo,et al.  River flow forecasting. Part 2. Algebraic development of linear modelling techniques , 1992 .

[5]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[6]  Roman Krzysztofowicz,et al.  Bayesian theory of probabilistic forecasting via deterministic hydrologic model , 1999 .

[7]  David S. Stoffer,et al.  State Space and Unobserved Component Models: Resampling in state space models , 2004 .

[8]  F. Pappenberger,et al.  Ensemble flood forecasting in Africa: a feasibility study in the Juba–Shabelle river basin , 2010 .

[9]  W. W. Daniel Applied Nonparametric Statistics , 1979 .

[10]  A. H. Murphy,et al.  A General Framework for Forecast Verification , 1987 .

[11]  C. Sims MACROECONOMICS AND REALITY , 1977 .

[12]  Stefania Tamea,et al.  Verification tools for probabilistic forecasts of continuous hydrological variables , 2006 .

[13]  Jonathan Rougier,et al.  Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations , 2007 .

[14]  Anton H. Westveld,et al.  Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .

[15]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[16]  Fionn Murtagh,et al.  Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting , 2006, Neurocomputing.

[17]  S. Mittnik Forecasting with balanced state space representations of multivariate distributed lag models , 1990 .

[18]  Daniel S. Wilks,et al.  Extending logistic regression to provide full‐probability‐distribution MOS forecasts , 2009 .

[19]  Jens Christian Refsgaard,et al.  Validation and Intercomparison of Different Updating Procedures for Real-Time Forecasting , 1997 .

[20]  Chien-Ming Chou,et al.  Application of wavelet‐based multi‐model Kalman filters to real‐time flood forecasting , 2004 .

[21]  George Kuczera,et al.  Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis , 2009 .

[22]  J. Thielen,et al.  The European Flood Alert System – Part 1: Concept and development , 2008 .

[23]  Fahim Ashkar,et al.  Revisiting some estimation methods for the generalized Pareto distribution , 2007 .

[24]  A. H. Murphy,et al.  Diagnostic Verification of Temperature Forecasts , 1989 .

[25]  Approximate state space models of some vector-valued macroeconomic time series for cross-country comparisons , 1986 .

[26]  Roman Krzysztofowicz,et al.  Precipitation uncertainty processor for probabilistic river stage forecasting , 2000 .

[27]  Stuart N. Lane,et al.  Assessment of rainfall‐runoff models based upon wavelet analysis , 2007 .

[28]  Roman Krzysztofowicz,et al.  A bivariate meta-Gaussian density for use in hydrology , 1997 .

[29]  Roman Krzysztofowicz,et al.  Integrator of uncertainties for probabilistic river stage forecasting: precipitation-dependent model , 2001 .

[30]  H. Hersbach Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems , 2000 .

[31]  Yuqiong Liu,et al.  A wavelet-based approach to assessing timing errors in hydrologic predictions , 2011 .

[32]  Roman Krzysztofowicz Why should a forecaster and a decision maker use Bayes Theorem , 1983 .

[33]  A. H. Murphy,et al.  Diagnostic verification of probability forecasts , 1992 .

[34]  Bruno Torrésani,et al.  Practical Time-Frequency Analysis, Volume 9: Gabor and Wavelet Transforms, with an Implementation in S , 1998 .

[35]  Roman Krzysztofowicz,et al.  Hydrologic uncertainty processor for probabilistic river stage forecasting , 2000 .

[36]  Hoshin Vijai Gupta,et al.  Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling , 2009 .

[37]  Roman Krzysztofowicz,et al.  Probability distributions for flood warning systems , 1994 .

[38]  W. Enders Applied Econometric Time Series , 1994 .

[39]  M. J. Paez,et al.  Wavelet analyses and applications , 2009 .

[40]  Roman Krzysztofowicz,et al.  Hydrologic uncertainty processor for probabilistic stage transition forecasting , 2004 .

[41]  Giovanni Petris,et al.  Dynamic linear models , 2009 .

[42]  Breanndán Ó Nualláin,et al.  Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model , 2007 .

[43]  Roman Krzysztofowicz,et al.  Bayesian ensemble forecast of river stages and ensemble size requirements , 2010 .

[44]  K. Beven,et al.  Parameter conditioning and prediction uncertainties of the LISFLOOD-WB distributed hydrological model , 2006 .

[45]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[46]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[47]  Fionn Murtagh,et al.  Prediction Based on a Multiscale Decomposition , 2003, Int. J. Wavelets Multiresolution Inf. Process..

[48]  Stewart D. Hodges,et al.  An evaluation of tests of distributional forecasts , 2003 .

[49]  Roman Krzysztofowicz,et al.  The case for probabilistic forecasting in hydrology , 2001 .

[50]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[51]  A. H. Murphy,et al.  Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient , 1988 .

[52]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[54]  Jasper A. Vrugt,et al.  Semi-distributed parameter optimization and uncertainty assessment for large-scale streamflow simulation using global optimization / Optimisation de paramètres semi-distribués et évaluation de l'incertitude pour la simulation de débits à grande échelle par l'utilisation d'une optimisation globale , 2008 .

[55]  R. T. Clarke,et al.  Adaptive hydrological forecasting—a review / Revue des méthodes de prévision hydrologique ajustables , 1981 .

[56]  K. Bogner,et al.  Error‐correction methods and evaluation of an ensemble based hydrological forecasting system for the Upper Danube catchment , 2008 .

[57]  Naoki Saito,et al.  Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..

[58]  George Kuczera,et al.  Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors , 2010 .

[59]  Ezio Todini,et al.  Predictive uncertainty assessment in real time flood forecasting , 2009 .

[60]  David Lindley,et al.  Optimal Statistical Decisions , 1971 .

[61]  Florian Pappenberger,et al.  Ensemble flood forecasting: a review. , 2009 .

[62]  Henrik Madsen,et al.  An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation , 2004 .

[63]  Giovanni Petris,et al.  Dynamic Linear Models with R , 2009 .

[64]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[65]  Ashu Jain,et al.  Temporal scaling in river flow: can it be chaotic? / L’invariance d’échelle de l’écoulement fluvial peut-elle être chaotique? , 2004 .

[66]  Jutta Thielen,et al.  The european flood alert system EFAS - Part 2: statistical skill assessment of probabilistic and deterministic operational forecasts. , 2008 .

[67]  J. M. Van Der Knijff,et al.  LISFLOOD : a GIS-based distributed model for river basin scale water balance and flood simulation , 2008 .

[68]  Roman Krzysztofowicz,et al.  Probabilistic Forecasts from the National Digital Forecast Database , 2008 .

[69]  Richard A. Levine,et al.  Wavelets and Field Forecast Verification , 1997 .

[70]  P. Gilbert Combining var estimation and state space model reduction for simple good predictions , 1995 .

[71]  S. Mittnik Multivariate time series analysis with state space models , 1989 .

[72]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[73]  Roman Krzysztofowicz,et al.  Transformation and normalization of variates with specified distributions , 1997 .

[74]  Lihua Xiong,et al.  Comparison of four updating models for real-time river flow forecasting , 2002 .

[75]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[76]  Jeremy Berkowitz Testing Density Forecasts, With Applications to Risk Management , 2001 .

[77]  A. Shamseldin,et al.  A real-time combination method for the outputs of different rainfall-runoff models , 1999 .

[78]  Konstantine P. Georgakakos,et al.  On improved hydrologic forecasting — Results from a WMO real-time forecasting experiment , 1990 .

[79]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[80]  Matthew D. Wilson,et al.  Tracking the uncertainty in flood alerts driven by grand ensemble weather predictions , 2009 .

[81]  Richard A. Ashley,et al.  Statistically significant forecasting improvements: how much out-of-sample data is likely necessary? ☆ , 2003 .

[82]  D. Freedman Bootstrapping Regression Models , 1981 .

[83]  H. Glahn,et al.  The Use of Model Output Statistics (MOS) in Objective Weather Forecasting , 1972 .

[84]  田中 勝人 D. B. Percival and A. T. Walden: Wavelet Methods for Time Series Analysis, Camb. Ser. Stat. Probab. Math., 4, Cambridge Univ. Press, 2000年,xxvi + 594ページ. , 2009 .

[85]  Roman Krzysztofowicz Bayesian Forecasting via Deterministic Model , 1999 .

[86]  Roman Krzysztofowicz Bayesian Correlation Score: A Utilitarian Measure of Forecast Skill , 1992 .