PADI4 acts as a coactivator of Tal1 by counteracting repressive histone arginine methylation

[1]  Paul Bertone,et al.  Citrullination regulates pluripotency and histone H1 binding to chromatin , 2014, Nature.

[2]  M. Grez,et al.  Histone arginine methylation keeps RUNX1 target genes in an intermediate state , 2013, Oncogene.

[3]  O. Ohara,et al.  PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression , 2013, Nature Communications.

[4]  C. Muchardt,et al.  Citrullination of Histone H3 Interferes with HP1-Mediated Transcriptional Repression , 2012, PLoS genetics.

[5]  J. Lausen,et al.  Tal1 regulates osteoclast differentiation through suppression of the master regulator of cell fusion DC‐STAMP , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  Yusuke Nakamura,et al.  Regulation of histone modification and chromatin structure by the p53–PADI4 pathway , 2012, Nature Communications.

[7]  J. Scheller,et al.  Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. , 2011, The Journal of clinical investigation.

[8]  P. Thompson,et al.  Genome-Wide Analysis Reveals PADI4 Cooperates with Elk-1 to Activate c-Fos Expression in Breast Cancer Cells , 2011, PLoS genetics.

[9]  M. Kelliher,et al.  A DNA-binding mutant of TAL1 cooperates with LMO2 to cause T cell leukemia in mice , 2011, Oncogene.

[10]  P. Thompson,et al.  Protein arginine deiminase 4: a target for an epigenetic cancer therapy , 2011, Cellular and Molecular Life Sciences.

[11]  R. Gentleman,et al.  Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages , 2010, The EMBO journal.

[12]  Jochen Gaedcke,et al.  Impact of RNA degradation on gene expression profiling , 2010, BMC Medical Genomics.

[13]  P. Li,et al.  Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression , 2010, Oncogene.

[14]  S. Jane,et al.  The TAL1/SCL Transcription Factor Regulates Cell Cycle Progression and Proliferation in Differentiating Murine Bone Marrow Monocyte Precursors , 2010, Molecular and Cellular Biology.

[15]  P. Thompson,et al.  Haloacetamidine‐Based Inactivators of Protein Arginine Deiminase 4 (PAD4): Evidence that General Acid Catalysis Promotes Efficient Inactivation , 2010, Chembiochem : a European journal of chemical biology.

[16]  J. Lausen,et al.  Targets of the Tal1 Transcription Factor in Erythrocytes , 2009, The Journal of Biological Chemistry.

[17]  A. Haman,et al.  Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. , 2009, Blood.

[18]  M. Mahajan,et al.  Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture. , 2009, Experimental hematology.

[19]  R. Métivier,et al.  Functional Connection between Deimination and Deacetylation of Histones , 2009, Molecular and Cellular Biology.

[20]  Xueqi Fu,et al.  LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis , 2009, Proceedings of the National Academy of Sciences.

[21]  Nicola K. Wilson,et al.  The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. , 2009, Blood.

[22]  Matthias Mann,et al.  High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. , 2008, Current opinion in biotechnology.

[23]  Bryan J. Venters,et al.  Histone Arg Modifications and p53 Regulate the Expression of OKL38, a Mediator of Apoptosis* , 2008, Journal of Biological Chemistry.

[24]  Yuan Luo,et al.  Regulation of p53 Target Gene Expression by Peptidylarginine Deiminase 4 , 2008, Molecular and Cellular Biology.

[25]  S. Richard,et al.  Arginine Methylation of the Histone H3 Tail Impedes Effector Binding* , 2008, Journal of Biological Chemistry.

[26]  Y. Dou,et al.  PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. , 2007, Genes & development.

[27]  E. Guccione,et al.  Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive , 2007, Nature.

[28]  Jürg Bähler,et al.  Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation , 2007, Nature.

[29]  Yuan Luo,et al.  Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. , 2006, Biochemistry.

[30]  Toshiyuki Shimizu,et al.  Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Jinxiang Han,et al.  Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors , 2006, Molecular carcinogenesis.

[32]  T. Hoang,et al.  ETO2 coordinates cellular proliferation and differentiation during erythropoiesis , 2006, The EMBO journal.

[33]  P. Vyas,et al.  ETO-2 Associates with SCL in Erythroid Cells and Megakaryocytes and Provides Repressor Functions in Erythropoiesis , 2005, Molecular and Cellular Biology.

[34]  Adam A. Margolin,et al.  Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia. , 2005, Blood.

[35]  Mark A. Hall,et al.  Functional but Abnormal Adult Erythropoiesis in the Absence of the Stem Cell Leukemia Gene , 2005, Molecular and Cellular Biology.

[36]  Igor Chernukhin,et al.  CTCF Regulates Growth and Erythroid Differentiation of Human Myeloid Leukemia Cells* , 2005, Journal of Biological Chemistry.

[37]  A. Roberts,et al.  The threshold of gp130-dependent STAT3 signaling is critical for normal regulation of hematopoiesis. , 2005, Blood.

[38]  J. Lausen,et al.  The Nuclear Receptor Co-repressor (N-CoR) Utilizes Repression Domains I and III for Interaction and Co-repression with ETO* , 2004, Journal of Biological Chemistry.

[39]  Steven Clarke,et al.  Human PAD4 Regulates Histone Arginine Methylation Levels via Demethylimination , 2004, Science.

[40]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[41]  Paul Tempst,et al.  Histone Deimination Antagonizes Arginine Methylation , 2004, Cell.

[42]  Toshiyuki Shimizu,et al.  Structural basis for Ca2+-induced activation of human PAD4 , 2004, Nature Structural &Molecular Biology.

[43]  J. D. Engel,et al.  Human β-Globin Locus Control Region HS5Contains CTCF- and Developmental Stage-Dependent Enhancer-BlockingActivity in ErythroidCells , 2003, Molecular and Cellular Biology.

[44]  Patrick Rodriguez,et al.  Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Donald Metcalf,et al.  The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. West,et al.  Conserved CTCF Insulator Elements Flank the Mouse and Human β-Globin Loci , 2002, Molecular and Cellular Biology.

[47]  H. Hirano,et al.  Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. , 2002, Biochemical and biophysical research communications.

[48]  T. Kouzarides,et al.  Methylation at arginine 17 of histone H3 is linked to gene activation , 2002, EMBO reports.

[49]  Cindy L. Miller,et al.  Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Brandt,et al.  P/CAF‐mediated acetylation regulates the function of the basic helix–loop–helix transcription factor TAL1/SCL , 2000, The EMBO journal.

[51]  S. Brandt,et al.  mSin3A Regulates Murine Erythroleukemia Cell Differentiation through Association with the TAL1 (or SCL) Transcription Factor , 2000, Molecular and Cellular Biology.

[52]  L. Zon,et al.  Specification of hematopoietic and vascular development by the bHLH transcription factor SCL without direct DNA binding. , 1999, Development.

[53]  R. Stein,et al.  p300 functions as a transcriptional coactivator for the TAL1/SCL oncoprotein , 1999, Oncogene.

[54]  K. Yasukawa,et al.  Soluble interleukin-6 (IL-6) receptor with IL-6 stimulates megakaryopoiesis from human CD34(+) cells through glycoprotein (gp)130 signaling. , 1999, Blood.

[55]  J. Dick,et al.  Enhanced Megakaryocyte and Erythroid Development From Normal Human CD34+ Cells: Consequence of Enforced Expression of SCL , 1998 .

[56]  S. Orkin,et al.  Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. , 1998, Genes & development.

[57]  T. Rabbitts,et al.  The LIM‐only protein Lmo2 is a bridging molecule assembling an erythroid, DNA‐binding complex which includes the TAL1, E47, GATA‐1 and Ldb1/NLI proteins , 1997, The EMBO journal.

[58]  P. Leder,et al.  Tal‐1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. , 1996, The EMBO journal.

[59]  T. Rabbitts,et al.  Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. , 1996, The EMBO journal.

[60]  C. Begley,et al.  Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Orkin,et al.  Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL , 1995, Nature.

[62]  T. Hirano,et al.  [Interleukin-6 and its receptor]. , 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[63]  A. Carroll,et al.  The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix‐loop‐helix protein. , 1990, The EMBO journal.

[64]  W. Schaffner,et al.  Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. , 1989, Nucleic acids research.

[65]  P. Nowell,et al.  Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[66]  K. Hornik,et al.  Bioconductor Project Bioconductor Project Working Papers Year Paper Bioconductor : Open software development for computational biology and bioinformatics , 2013 .

[67]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[68]  J. Lausen,et al.  1 TARGETS OF THE TAL 1 TRANSCRIPTION FACTOR IN ERYTHROCYTES : E 2 UBIQUITIN CONJUGASE REGULATION BY TAL 1 , 2009 .

[69]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[70]  C. Croce,et al.  Advances in Brief T-Cell . . directed TAL-1 Expression Induces T-Cell Malignancies in Transgenic Mice ' , 2006 .

[71]  A. West,et al.  Conserved CTCF insulator elements flank the mouse and human beta-globin loci. , 2002, Molecular and cellular biology.

[72]  C. Cambillau,et al.  Functional and structural characterization , 1999 .

[73]  J. Dick,et al.  Enhanced megakaryocyte and erythroid development from normal human CD34(+) cells: consequence of enforced expression of SCL. , 1998, Blood.