Microstructures and high-temperature failure analyses of 25Cr-35Ni-Nb+MA/32Cr-20Ni-Nb dissimilar welded joint with different filler wires

[1]  L. Ke,et al.  Interface characteristics, microstructure, and mechanical properties of friction stir lap welded dissimilar Al/Mg alloy joints: effect of pin-tip profile , 2022, The International Journal of Advanced Manufacturing Technology.

[2]  Jihye Park,et al.  Microstructural investigation on the failure in APMT/KHR45A dissimilar weld interface after long-term service at high temperature , 2021 .

[3]  H. Najafi,et al.  Hot deformation mechanisms, mechanical properties and microstructural evolution of a HP-Nb steel , 2021 .

[4]  Donglong Zhao Welding Technology , 2021, Encyclopedia of Ocean Engineering.

[5]  A. Goswami,et al.  Failure of water quench tower in an ethylene cracking plant , 2020 .

[6]  J. González-Velázquez Mechanical Behavior and Fracture of Engineering Materials , 2019, Structural Integrity.

[7]  Xuedong Chen,et al.  Failure analyses of centrifugal casting ethylene pyrolysis furnace tubes from microporosity defects , 2019, Engineering Failure Analysis.

[8]  X. Ren,et al.  Micro-properties of (Nb, , 2019 .

[9]  Sungdug Kim,et al.  Investigation on new type of fracture in Cr-Mo-V steel slab , 2019, Engineering Failure Analysis.

[10]  Matías Sosa Lissarrague,et al.  Evolución microestructural durante el envejecimiento a alta temperatura de una aleación 35Ni-25Cr-Nb , 2018, Matéria (Rio de Janeiro).

[11]  M. H. Sosa Lissarrague,et al.  Study of the Microstructural Evolution in a 35Ni-25Cr-Nb Heat-Resistant Alloy by Dilatometry and Electron Microscopy , 2018, Metallography, Microstructure, and Analysis.

[12]  G. Casalino Advances in Welding Metal Alloys, Dissimilar Metals and Additively Manufactured Parts , 2017 .

[13]  J. Gong,et al.  Numerical simulation of damage evolution and life prediction for two commercial Fe-Cr-Ni alloys subjected to mechanical and environmental factors , 2016 .

[14]  Xuedong Chen,et al.  Carbide transformation in carburised zone of 25Cr35NiNb+MA alloy after high-temperature service , 2016 .

[15]  M. Kral,et al.  Microstructure and Carburization Detection in HP Alloy Pyrolysis Tubes , 2015, Metallography, Microstructure, and Analysis.

[16]  A. Reihani,et al.  Failure analysis and weld ability improvement of 35%Cr–45%Ni heat resistant alloy , 2015 .

[17]  J. Sun,et al.  Phase Transformation of Nb in Carburized Zone of 25Cr35NiNb+MA Alloy After Service☆ , 2015 .

[18]  Jian-xin Dong,et al.  Investigation of Cr34Ni45 Ethylene Cracking Furnace Tube in Service , 2013 .

[19]  F. Deschaux-Beaume,et al.  Aging of a cast 35Cr-45Ni heat resistant alloy , 2012 .

[20]  S. Allahkaram,et al.  Investigation of weldability and property changes of high pressure heat-resistant cast stainless steel tubes used in pyrolysis furnaces after a five-year service , 2012 .

[21]  K. Guan,et al.  Analysis of failed electron beam welds in ethylene cracking tubes , 2011 .

[22]  Η.Μ. Τawancy Degradation of mechanical strength of pyrolysis furnace tubes by high-temperature carburization in a petrochemical plant , 2009 .

[23]  J. Furtado,et al.  Microstructure evolution of HP40-Nb alloys during aging under air at 1000 °C , 2009 .

[24]  Hong Xu,et al.  Analysis of failed ethylene cracking tubes , 2005 .

[25]  D. Young,et al.  Microstructure of HK40 alloy after high temperature service in oxidizing/carburizing environment: I. Oxidation phenomena and propagation of a crack , 2002 .