Room-Temperature Hot-Polaron Photovoltaics in the Charge-Ordered State of a Layered Perovskite Oxide Heterojunction

Harvesting of solar energy by hot carriers from optically induced intraband transitions offers new perspectives for photovoltaic energy conversion. Clearly, mechanisms slowing down hot-carrier thermalization constitute a fundamental core of such pathways of third-generation photovoltaics. The intriguing concept of hot polarons stabilized by long-range phonon correlations in charge-ordered strongly correlated three-dimensional metal-oxide perovskite films has emerged and been demonstrated for ${\mathrm{Pr}}_{0.7}{\mathrm{Ca}}_{0.3}{\mathrm{Mn}\mathrm{O}}_{3}$ at low temperature. In this work, a tailored approach to extending such processes to room temperature is presented. It consists of a specially designed epitaxial growth of two-dimensional Ruddlesden-Popper ${\mathrm{Pr}}_{0.5}{\mathrm{Ca}}_{1.5}{\mathrm{Mn}\mathrm{O}}_{4}$ films on $\mathrm{Nb}$:${\mathrm{Sr}\mathrm{Ti}\mathrm{O}}_{3}$ with a charge-ordering transition at ${T}_{\mathrm{CO}}$ \ensuremath{\sim} 320 K. This opens the route to a different phonon-bottleneck strategy of slowing down carrier relaxation by strong coupling of electrons to cooperative lattice modes.

[1]  A. Zakhidov,et al.  Polarons in Halide Perovskites: A Perspective. , 2020, The journal of physical chemistry letters.

[2]  P. Blöchl,et al.  Evolution of the magnetic and polaronic order of Pr1/2Ca1/2MnO3 following an ultrashort light pulse , 2019, 1909.03412.

[3]  R. Mathies,et al.  Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite , 2018, Nature Communications.

[4]  Lucy D. Whalley,et al.  Slow Cooling of Hot Polarons in Halide Perovskite Solar Cells , 2017, ACS energy letters.

[5]  V. Roddatis,et al.  Contribution of Jahn-Teller and charge transfer excitations to the photovoltaic effect of manganite/titanite heterojunctions , 2017 .

[6]  S. Techert,et al.  Evolution of Hot Polaron States with a Nanosecond Lifetime in a Manganite Perovskite , 2017 .

[7]  V. Roddatis,et al.  Ruddlesden-Popper interface in correlated manganite heterostructures induces magnetic decoupling and dead layer reduction , 2016 .

[8]  V. Roddatis,et al.  Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence , 2016, Materials.

[9]  V. Roddatis,et al.  Electronic structure of Pr 1 − x Ca x MnO 3 , 2016, 1610.07548.

[10]  A. Nugroho,et al.  Correlation between lattice vibrations with charge, orbital, and spin ordering in the layered manganite Pr0.5Ca1.5MnO4 , 2015 .

[11]  S. Techert,et al.  Temperature- and doping-dependent optical absorption in the small-polaron system Pr1−xCaxMnO3. , 2015 .

[12]  Shujuan Huang,et al.  Hot carrier solar cell absorber prerequisites and candidate material systems , 2015 .

[13]  C. Jooss,et al.  Effects of interaction and disorder on polarons in colossal resistance manganite Pr0.68Ca0.32MnO3 thin films , 2014 .

[14]  M Sikorski,et al.  A time-dependent order parameter for ultrafast photoinduced phase transitions. , 2014, Nature materials.

[15]  E. Aydil,et al.  Hot-Electron Transfer from Semiconductor Nanocrystals , 2010, Science.

[16]  S. Johnson,et al.  Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order. , 2009, Physical review letters.

[17]  M. Hervieu,et al.  Charge–orbital ordering above room temperature in the 2D Pr1−xCa1+xMnO4 manganites , 2003 .

[18]  J. Gerard,et al.  Long polaron lifetime in InAs/GaAs self-assembled quantum dots. , 2002, Physical review letters.

[19]  T. Venkatesan,et al.  Reply to "Comment on 'Evidence for the immobile bipolaron formation in the paramagnetic state of the magnetoresistive manganites"' , 2000, cond-mat/0501400.

[20]  G. Bastard,et al.  Strong Electron-Phonon Coupling Regime in Quantum Dots: Evidence for Everlasting Resonant Polarons , 1999 .

[21]  T. Noh,et al.  Determination of electronic band structures of CaMnO 3 and LaMnO 3 using optical-conductivity analyses , 1997 .

[22]  H. Keller,et al.  Giant oxygen isotope shift in the magnetoresistive perovskite La1–xCaxMnO3+y , 1996, Nature.

[23]  Maglione,et al.  Polaronic relaxation in perovskites. , 1995, Physical review. B, Condensed matter.

[24]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[25]  D. Emin,et al.  Optical properties of large and small polarons and bipolarons. , 1993, Physical review. B, Condensed matter.

[26]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[27]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[28]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[29]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[30]  E. Wollan,et al.  Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [ ( 1 − x ) La , x Ca ] Mn O 3 , 1955 .

[31]  M. Green,et al.  Energy conversion approaches and materials for high-efficiency photovoltaics. , 2016, Nature materials.

[32]  M. A. Majidi,et al.  University of Groningen Temperature-dependent and anisotropic optical response of layered Pr0.5Ca1.5MnO4 probed by spectroscopic ellipsometry , 2013 .