20-Gb/s direct modulation of 980 nm VCSELs based on submonolayer deposition of quantum dots

980 nm vertical-cavity surface-emitting laser based on sub-monolayer growth of quantum dots show at 25 and 85°C for 20 Gb/s without current adjustment clearly open eyes and error free operation with bit error rates better than 10-12. For these multimode lasers the small signal modulation bandwidth decreases only from 15 GHz at 25°C to 13 GHz at 85°C. Single mode devices demonstrate at 20°C a small signal modulation bandwidth of 16.6 GHz with 0.8 mW optical output power and a record high modulation current efficiency factor of 19 GHz/mA1/2.

[1]  Richard Schatz,et al.  Quest for very high speed VCSELs: pitfalls and clues , 2001, SPIE OPTO.

[2]  Friedhelm Hopfer,et al.  Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors , 2002 .

[3]  Roger King,et al.  Applications of VCSELs for optical interconnects , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[4]  Nikolai N. Ledentsov,et al.  Direct modulation and mode locking of 1.3 μm quantum dot lasers , 2004 .

[5]  Y. Wang,et al.  High-frequency modulation characteristics of 1.3-/spl mu/m InGaAs quantum dot lasers , 2004, IEEE Photonics Technology Letters.

[6]  Mikhail V. Maximov,et al.  0.94 µm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots , 2000 .

[7]  Y. Kwark,et al.  15.6 Gb/s transmission over 1 km of next generation multimode fiber , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[8]  H. Hatakeyama,et al.  25-Gbps operation of 1.1-/spl mu/m-range InGaAs VCSELs for high-speed optical interconnections , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[9]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[10]  Nikolai N. Ledentsov,et al.  3.9 W CW power from sub-monolayer quantum dot diode laser , 1999 .

[11]  B. E. Hammons,et al.  Small and large signal modulation of 850 nm oxide-confined verticai-cavity surface-emitting lasers , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[12]  Nikolai N. Ledentsov,et al.  Self-Organized InGaAs Quantum Dots for Advanced Applications in Optoelectronics , 2001, Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM (Cat. No.01CH37198).

[13]  Kent D. Choquette,et al.  High-frequency modulation of oxide- confined vertical cavity surface emitting lasers , 1996 .

[14]  P. Chiniwalla,et al.  Chip-to-chip optical interconnects , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[15]  Z. Mi,et al.  High-Speed Quantum Dot Lasers , 2007 .

[16]  Mikhail V. Maximov,et al.  High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers , 2005 .

[17]  G. Eisenstein,et al.  The impact of energy band diagram and inhomogeneous broadening on the optical differential gain in nanostructure lasers , 2005, IEEE Journal of Quantum Electronics.