The Mid-infrared Molecular Inventory toward Orion IRc2

We present the first high spectral resolution mid-infrared survey in the Orion BN/KL region, covering 7.2–28.3 μm. With SOFIA/EXES, we target the enigmatic source Orion IRc2. While this is in the most prolifically studied massive star-forming region, longer wavelengths and molecular emission lines dominated previous spectral surveys. The mid-infrared observations in this work access different components and molecular species in unprecedented detail. We unambiguously identify two new kinematic components, both chemically rich with multiple molecular absorption lines. The “blue clump” has v LSR = −7.1 ± 0.7 km s−1, and the “red clump” has 1.4 ± 0.5 km s−1. While the blue and red clumps have similar temperatures and line widths, molecular species in the blue clump have higher column densities. They are both likely linked to pure rotational H2 emission also covered by this survey. This work provides evidence for the scenario that the blue and red clumps are distinct components unrelated to the classic components in the Orion BN/KL region. Comparison to spectroscopic surveys toward other infrared targets in the region show that the blue clump is clearly extended. We analyze, compare, and present in-depth findings on the physical conditions of C2H2, 13CCH2, CH4, CS, H2O, HCN, H13CN , HNC, NH3, and SO2 absorption lines and an H2 emission line associated with the blue and red clumps. We also provide limited analysis of H2O and SiO molecular emission lines toward Orion IRc2 and the atomic forbidden transitions [Fe ii], [S i], [S iii], and [Ne ii].

[1]  C. DeWitt,et al.  Infrared H2O Absorption in Massive Protostars at High Spectral Resolution: Full Spectral Survey Results of AFGL 2591 and AFGL 2136 , 2022, The Astrophysical Journal.

[2]  M. Juvela,et al.  ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions -- VIII. A search for hot cores by using C$_2$H$_5$CN, CH$_3$OCHO and CH$_3$OH lines , 2022, 2201.10044.

[3]  A. Ginsburg,et al.  Structure of the Source I Disk in Orion-KL , 2021, The Astrophysical Journal.

[4]  C. I. O. Technology.,et al.  Mapping Physical Parameters in Orion KL at High Spatial Resolution , 2021, The Astrophysical Journal.

[5]  S. Bovino,et al.  On the low ortho-to-para H2 ratio in star-forming filaments , 2021, Astronomy & Astrophysics.

[6]  N. Woolf,et al.  Carbon Isotope Ratios in Planetary Nebulae: The Unexpected Enhancement of 13C , 2020, The Astrophysical Journal.

[7]  Timothy J. Lee,et al.  The First Mid-infrared Detection of HNC in the Interstellar Medium: Probing the Extreme Environment toward the Orion Hot Core , 2020, 2008.12787.

[8]  D. Neufeld,et al.  High-resolution Infrared Spectroscopy of Hot Molecular Gas in AFGL 2591 and AFGL 2136: Accretion in the Inner Regions of Disks around Massive Young Stellar Objects , 2020, The Astrophysical Journal.

[9]  P. Caselli,et al.  Carbon isotopic fractionation in molecular clouds , 2020, Astronomy & Astrophysics.

[10]  A. Tielens,et al.  The H2O Spectrum of the Massive Protostar AFGL 2136 IRS 1 from 2 to 13 μm at High Resolution: Probing the Circumstellar Disk , 2020, The Astrophysical Journal.

[11]  J. He,et al.  An experimental study of the surface formation of methane in interstellar molecular clouds , 2020, Nature Astronomy.

[12]  G. Ferland,et al.  Deciphering the 3D Orion Nebula-I: Expanding Shells in the Huygens Region , 2020, The Astrophysical Journal.

[13]  A. Ginsburg,et al.  Observations of the Orion Source I Disk and Outflow Interface , 2019, The Astrophysical Journal.

[14]  Di Li,et al.  Sulfur-bearing Molecules in Orion KL , 2019, The Astrophysical Journal.

[15]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[16]  E. Herbst,et al.  Modeling C-shock Chemistry in Isolated Molecular Outflows , 2019, The Astrophysical Journal.

[17]  V. Rivilla,et al.  ALMA Observations of Ethyl Formate toward Orion KL , 2018, The Astrophysical Journal.

[18]  A. Tielens,et al.  High-resolution SOFIA/EXES Spectroscopy of SO2 Gas in the Massive Young Stellar Object MonR2 IRS3: Implications for the Sulfur Budget , 2018, The astrophysical journal. Letters.

[19]  D. Neufeld,et al.  Infrared Detection of Abundant CS in the Hot Core AFGL 2591 at High Spectral Resolution with SOFIA/EXES , 2018, The Astrophysical Journal.

[20]  Jonathan C. Tan,et al.  High Spectral Resolution Observations toward Orion BN at 6 μm: No Evidence for Hot Water , 2018, The Astrophysical Journal.

[21]  E. Dishoeck,et al.  The ALMA-PILS survey: isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293–2422B , 2018, Astronomy & Astrophysics.

[22]  E. Herbst,et al.  Hot Cores in Magellanic Clouds , 2018 .

[23]  F. Lique,et al.  Abundance of HCN and its C and N isotopologues in L1498 , 2018, Astronomy & Astrophysics.

[24]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[25]  V. Wakelam,et al.  A new look at sulphur chemistry in hot cores and corinos , 2017, 1711.11406.

[26]  G. Nyman,et al.  H$_2$ formation on interstellar dust grains: the viewpoints of theory, experiments, models and observations , 2017, 1711.10568.

[27]  Eric Herbst,et al.  High Spectral Resolution SOFIA/EXES Observations of C2H2 toward Orion IRc2 , 2017, 1709.04084.

[28]  S. Qin,et al.  ALMA Observations of the Archetypal “Hot Core” That Is Not: Orion-KL , 2017, 1708.08448.

[29]  L. Looney,et al.  CARMA λ = 1 cm Spectral Line Survey of Orion-KL , 2017, 1708.06776.

[30]  M. Honma,et al.  Disk-driven rotating bipolar outflow in Orion Source I , 2017, Nature Astronomy.

[31]  J. Rizzo,et al.  A spectroscopic survey of Orion KL between 41.5 and 50 GHz. , 2017, Astronomy and astrophysics.

[32]  M. Wright,et al.  ALMA Images of the Orion Hot Core at 349 GHz , 2017, 1705.03957.

[33]  G. Ferland,et al.  Which Stars Are Ionizing the Orion Nebula? , 2017, 1703.06191.

[34]  A. Ginsburg,et al.  The ALMA View of the OMC1 Explosion in Orion , 2017, 1701.01906.

[35]  Jonathan Tennyson,et al.  The 2015 edition of the GEISA spectroscopic database , 2016 .

[36]  Laurence S. Rothman,et al.  HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data , 2016 .

[37]  B. Jiang,et al.  A PRECISE DETERMINATION OF THE MID-INFRARED INTERSTELLAR EXTINCTION LAW BASED ON THE APOGEE SPECTROSCOPIC SURVEY , 2016, 1602.02928.

[38]  K. Menten,et al.  A 1.3 cm Line Survey toward Orion KL , 2015, 1506.03235.

[39]  S. Viti,et al.  A new study of an old sink of sulphur in hot molecular cores: the sulphur residue , 2015, 1503.07227.

[40]  Devin W. Silvia,et al.  The Orion Fingers: Near-IR Adaptive Optics Imaging of an Explosive Protostellar Outflow , 2015, 1502.04711.

[41]  G. Bilalbegović,et al.  Sulfur-bearing species in molecular clouds , 2014, 1410.8293.

[42]  E. Bergin,et al.  13C–METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION–KL AND SPECTROSCOPIC CHARACTERIZATION , 2014, 1410.4418.

[43]  P. Caselli,et al.  Chemistry and radiative transfer of water in cold, dense clouds , 2014, 1403.0155.

[44]  Jonathan Tennyson,et al.  ExoMol line lists - III. An improved hot rotation-vibration line list for HCN and HNC , 2013, 1311.1328.

[45]  M. Gerin,et al.  Nitrogen isotopic ratios in Barnard 1: a consistent study of the N2H+, NH3, CN, HCN, and HNC isotopologues , 2013, 1309.5782.

[46]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[47]  T. Henning,et al.  Resolving the chemical substructure of Orion-KL , 2013, 1504.08012.

[48]  L. Pagani,et al.  Ortho-H2 and the age of prestellar cores , 2013 .

[49]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[50]  H. Rix,et al.  MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES , 2013, 1301.2328.

[51]  J. Bally,et al.  A 3D view of the outflow in the Orion Molecular Cloud 1 (OMC-1) , 2012, 1203.3056.

[52]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[53]  J. Tennyson,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012, 1204.0124.

[54]  H. Kataza,et al.  Physical Relation of Source I to IRc2 in the Orion KL Region , 2011, 1104.4394.

[55]  D. Despois,et al.  HCOOCH3 as a probe of temperature and structure in Orion-KL , 2011, 1103.2548.

[56]  Luis A. Zapata Johannes Schmid-Burgk Karl M. Menten Orion KL: the hot core that is not a , 2010, 1009.1426.

[57]  J. Goicoechea,et al.  A line-confusion limited millimeter survey of Orion KL - II. Silicon-bearing species , 2010, 1012.1969.

[58]  F. Adams The Birth Environment of the Solar System , 2010, 1001.5444.

[59]  T. Henning,et al.  Disk and outflow signatures in Orion-KL: the power of high-resolution thermal infrared spectroscopy , 2010, 1001.0650.

[60]  C. Ceccarelli,et al.  Constraining the ortho-to-para ratio of H2 with anomalous H2CO absorption , 2009 .

[61]  G. Ferland,et al.  Spitzer reveals what's behind Orion's Bar , 2009, Proceedings of the International Astronomical Union.

[62]  S. Bontemps,et al.  S-bearing molecules in massive dense cores , 2009, 0906.1122.

[63]  S. Sakai,et al.  SiO Maser Observations toward Orion-KL with VERA , 2008 .

[64]  P. Bernath,et al.  A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite II. Data analysis , 2007, 0910.1815.

[65]  P. Bernath,et al.  A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite: I. The observational data , 2007, 0910.1825.

[66]  R. Garrod,et al.  Molecular Evolution and Star Formation: From Prestellar Cores to Protostellar Cores , 2007, 0710.0712.

[67]  Urbana,et al.  Kinematics and Chemistry of the Hot Molecular Core in G34.26+0.15 at High Resolution , 2007, astro-ph/0701827.

[68]  M. Barlow,et al.  A far-infrared molecular and atomic line survey of the Orion KL region , 2006, astro-ph/0605410.

[69]  University of Wales,et al.  Hubble Space Telescope NICMOS Polarization Measurements of OMC-1 , 2006, astro-ph/0601077.

[70]  J. Tennyson,et al.  Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas , 2005, astro-ph/0512363.

[71]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[72]  M. A. Brewster,et al.  The 12C/13C Isotope Gradient Derived from Millimeter Transitions of CN: The Case for Galactic Chemical Evolution , 2005 .

[73]  D. Rouan,et al.  Observations of spatial and velocity structure in the Orion molecular cloud , 2005, astro-ph/0511226.

[74]  L. Loinard,et al.  Dynamical Decay of a Massive Multiple System in Orion KL? , 2005, astro-ph/0509201.

[75]  B. Draine,et al.  H2 Pure Rotational Lines in the Orion Bar , 2005, astro-ph/0506003.

[76]  F. Motte,et al.  A Molecular Line Survey of Orion KL in the 350 Micron Band , 2005 .

[77]  G. Blake,et al.  Methane Abundance Variations toward the Massive Protostar NGC 7538 IRS 9 , 2004, astro-ph/0407270.

[78]  P. Caselli,et al.  Resetting chemical clocks of hot cores based on S-bearing molecules , 2004, astro-ph/0404246.

[79]  P. Tuthill,et al.  High Angular Resolution Mid-Infrared Imaging of Young Stars in Orion BN/KL , 2004, astro-ph/0402423.

[80]  J. Bally,et al.  A New Mid-Infrared Map of the BN/KL Region Using the Keck Telescope , 2003, astro-ph/0404115.

[81]  E. F. Dishoeck,et al.  Gas-phase CO2, C2H2, and HCN toward Orion-KL , 2003 .

[82]  F. D. Tak,et al.  Sulphur chemistry in the envelopes of massive young stars , 2002, astro-ph/0212325.

[83]  R. Neri,et al.  On the Heating Source of the Orion KL Hot Core , 2002, astro-ph/0206504.

[84]  J. Takahashi The Ortho/Para Ratio of H2 Newly Formed on Dust Grains , 2001 .

[85]  D. Jaffe,et al.  TEXES: A Sensitive High‐Resolution Grating Spectrograph for the Mid‐Infrared , 2001, astro-ph/0110521.

[86]  E. F. Dishoeck,et al.  Gas-phase SO2 in absorption towards massive protostars , 2001 .

[87]  D. Lis,et al.  A Line Survey of Orion-KL from 607 to 725 GHz , 2001 .

[88]  K. Johnston,et al.  Kinematics, Kinetic Temperatures, and Column Densities of NH3 in the Orion Hot Core , 2000 .

[89]  T. Millar,et al.  On the Abundance Gradients of Organic Molecules along the TMC-1 Ridge , 2000 .

[90]  W. Irvine,et al.  The Formaldehyde Ortho/Para Ratio as a Probe of Dark Cloud Chemistry and Evolution , 1999, The Astrophysical journal.

[91]  P. Goldsmith,et al.  Population Diagram Analysis of Molecular Line Emission , 1999 .

[92]  C. Gwinn,et al.  Coexisting conical bipolar and equatorial outflows from a high-mass protostar , 1998, Nature.

[93]  Bart Vandenbussche,et al.  The ISO-SWS 2.4-45.2 Micron Spectrum toward Orion IRc2 , 1998 .

[94]  A. Tielens,et al.  High-Temperature Molecular Cores near Massive Stars and Application to the Orion Hot Core , 1998 .

[95]  M. P. Gutiérrez,et al.  Shock Chemistry in the Young Bipolar Outflow L1157 , 1997 .

[96]  S. Charnley Sulfuretted Molecules in Hot Cores , 1997 .

[97]  L. Mundy,et al.  A λ = 1.3 Millimeter Aperture Synthesis Molecular Line Survey of Orion Kleinmann-Low , 1996 .

[98]  M. Wright,et al.  A Multiline Aperture Synthesis Study of Orion-KL , 1996 .

[99]  K. Menten,et al.  What is Powering the Orion Kleinmann-Low Infrared Nebula? , 1995 .

[100]  N. Evans,et al.  Observation of infrared and radio lines of molecules toward GL 2591 and comparison to physical and chemical models , 1995, astro-ph/9505115.

[101]  W. Danchi,et al.  The distribution of molecules in the core of OMC-1 , 1995 .

[102]  J. Lacy,et al.  Shocked pure-rotational emission from H2 in Orion , 1994 .

[103]  È. Roueff,et al.  Sulphur-bearing molecules as tracers of shocks in interstellar clouds , 1993 .

[104]  S. Lord A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation , 1992 .

[105]  D. Gezari Mid-infrared imaging of Orion BN/KL : astrometry of IRc2 and the SiO maser , 1992 .

[106]  E. Herbst,et al.  Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules , 1992 .

[107]  N. Evans,et al.  Infrared Molecular Spectroscopy toward the Orion IRc2 and IRc7 Sources: A New Probe of Physical Conditions and Abundances in Molecular Clouds , 1991 .

[108]  Neal J. Evans,et al.  Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds , 1991 .

[109]  M. Allen,et al.  Hot and cold gas toward young stellar objects , 1990 .

[110]  Y. Murata,et al.  APERTURE SYNTHESIS OBSERVATIONS OF NH-3 IN OMC-1: FILAMENTARY STRUCTURES AROUND ORION-KL , 1990 .

[111]  N. Evans,et al.  Discovery of interstellar acetylene , 1989 .

[112]  T. Geballe,et al.  The velocity profile of the 1 – 0 S(1) line of molecular hydrogen at Peak 1 in Orion , 1989 .

[113]  J. Stutzki,et al.  The Orion Molecular Cloud and Star-Forming Region , 1988 .

[114]  S. E. Persson,et al.  Images of star-forming regions. III. Sources in the NGC 7538 molecular cloud complex , 1988 .

[115]  M. Felli,et al.  Solar system-sized condensations in the Orion Nebula , 1987 .

[116]  Geoffrey A. Blake,et al.  Molecular abundances in OMC-1 - the chemical composition of interstellar molecular clouds and the influence of massive star formation , 1987 .

[117]  E. Becklin,et al.  The Kleinmann-Low nebula - An infrared cavity , 1984 .

[118]  S. Beck The structure of high-velocity gas in Orion and the possible role of IRc9 , 1984 .

[119]  S. Ridgway,et al.  The circumstellar and nebular environment of the Becklin-Neugebauer object - 2-5 micron wavelength spectroscopy , 1983 .

[120]  R. Genzel,et al.  NH3 in Orion-KL - A new interpretation , 1982 .

[121]  M. Oppenheimer,et al.  Molecular diagnostics of interstellar shocks , 1980 .

[122]  A. H. Barrett,et al.  Ammonia observations of the Orion molecular cloud. , 1979 .

[123]  F. Gillett,et al.  Infrared observations of the OH source W33 A , 1978 .

[124]  S. E. Persson,et al.  Observations of the molecular hydrogen emission from the Orion Nebula , 1978 .

[125]  G. Rieke,et al.  High-Resolution Maps of the Kleinmann-Low Nebula in Orion , 1973 .

[126]  Frank J. Low,et al.  Discovery of an infrared nebula in Orion. , 1967 .

[127]  G. Neugebauer,et al.  Observations of an infrared star in the Orion nebula. , 1967 .

[128]  E. Murphy,et al.  Science with a next-generation Very Large Array , 2019 .

[129]  N. Evans,et al.  The c2d Spitzer Spectroscopic Survey of Ices around Low-Mass Young Stellar Objects. III. CH4 , 2008 .

[130]  E. F. Dishoeck,et al.  Chemical evolution of star-forming regions. , 1998, Annual review of astronomy and astrophysics.

[131]  T G Phillips,et al.  A Line Survey of Orion KL from 325 to 360 GHz , 1997, The Astrophysical journal. Supplement series.