Lyapunov Exponents and Vectors for Determining the Geometric Structure of Nonlinear Dynamical Systems

of the Thesis xii

[1]  L. Barreira,et al.  Lyapunov Exponents and Smooth Ergodic Theory , 2002 .

[2]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[3]  R. Russell,et al.  On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems , 1997 .

[4]  Arthur E. Bryson,et al.  Energy-state approximation in performance optimization of supersonic aircraft , 1969 .

[5]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[6]  Desmond J. Higham,et al.  Error analysis of QR algorithms for computing Lyapunov exponents , 2001 .

[7]  Eugene Isaacson,et al.  Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell) , 1989, SIAM Rev..

[8]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[9]  A. Isidori Nonlinear Control Systems , 1985 .

[10]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[11]  Kenneth D. Mease,et al.  Multiple time-scales in nonlinear flight mechanics: diagnosis and modeling , 2005, Appl. Math. Comput..

[12]  Hans G. Kaper,et al.  Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .

[13]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[14]  Michael Shub,et al.  The local theory of normally hyperbolic, invariant, compact manifolds , 1977 .

[15]  Eugene M. Cliff,et al.  Energy state revisited , 1983 .

[16]  Wiesel Modal feedback control on chaotic trajectories. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Henry J. Kelley,et al.  Aircraft Maneuver Optimization by Reduced-Order Approximation , 1973 .

[18]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .

[19]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[20]  Kenneth D. Mease,et al.  Geometry of Computational Singular Perturbations , 1995 .

[21]  F. Christiansen,et al.  Computing Lyapunov spectra with continuous Gram - Schmidt orthonormalization , 1996, chao-dyn/9611014.

[22]  Habib N. Najm,et al.  Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method , 2005 .

[23]  Anil V. Rao,et al.  Eigenvector approximate dichotomic basis method for solving hyper‐sensitive optimal control problems , 1999 .

[24]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[26]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[27]  Robert D. Moser,et al.  Short-time Lyapunov exponent analysis and the transition to chaos in Taylor–Couette flow , 1991, Journal of Fluid Mechanics.

[28]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[29]  J. Chow A class of singularly perturbed, nonlinear, fixed-endpoint control problems , 1979 .

[30]  Sanjay Bharadwaj Geometric structure of multiple time-scale nonlinear dynamical systems , 1999 .

[31]  Habib N. Najm,et al.  Inertial manifolds with CSP , 2003 .

[32]  R. Samelson Lyapunov, Floquet, and singular vectors for baroclinic waves , 2001 .

[33]  Simon J. Fraser,et al.  The steady state and equilibrium approximations: A geometrical picture , 1988 .

[34]  Anil V. Rao,et al.  Dichotomic basis approach to solving hyper-sensitive optimal control problems , 1999, Autom..

[35]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[36]  J. Craggs Applied Mathematical Sciences , 1973 .

[37]  Michael J. Davis,et al.  Geometric investigation of low-dimensional manifolds in systems approaching equilibrium , 1999 .

[38]  Steven A. Orszag,et al.  Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method , 1987 .

[39]  K. Mease,et al.  A new invariance property of Lyapunov characteristic directions , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[40]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[41]  George R. Sell,et al.  The spectrum of an invariant submanifold , 1980 .

[42]  Wiesel Continuous time algorithm for Lyapunov exponents. I. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[44]  Hans G. Kaper,et al.  Analysis of the Computational Singular Perturbation Reduction Method for Chemical Kinetics , 2004, J. Nonlinear Sci..

[45]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[46]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[47]  William E. Wiesel,et al.  Optimal Pole Placement in Time-Dependent Linear Systems , 1994 .

[48]  Mo Jiaqi,et al.  A class of singularly perturbed nonlinear boundary value problem , 2005 .

[49]  S. Bharadwaj,et al.  Timescale Analysis for Nonlinear Dynamical Systems , 2003 .

[50]  Ralf Eichhorn,et al.  Transformation invariance of Lyapunov exponents , 2001 .

[51]  J. Greene,et al.  The calculation of Lyapunov spectra , 1987 .

[52]  D. Naidu,et al.  Singular Perturbations and Time Scales in Guidance and Control of Aerospace Systems: A Survey , 2001 .

[53]  Jean-Luc Thiffeault Derivatives and constraints in chaotic flows: asymptotic behaviour and a numerical method , 2001 .

[54]  Anna Trevisan,et al.  Transient error growth and local predictability: a study in the Lorenz system , 1995 .

[55]  Marc R. Roussel,et al.  Geometry of the steady-state approximation: Perturbation and accelerated convergence methods , 1990 .

[56]  Gene H. Golub,et al.  Matrix computations , 1983 .